计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2015年
2期
203-208
,共6页
叶威%赵俭辉%赵洋%王勇
葉威%趙儉輝%趙洋%王勇
협위%조검휘%조양%왕용
Surfacelet变换%动态纹理%广义高斯模型%KL距离%支持向量机%欧氏距离
Surfacelet變換%動態紋理%廣義高斯模型%KL距離%支持嚮量機%歐氏距離
Surfacelet변환%동태문리%엄의고사모형%KL거리%지지향량궤%구씨거리
Surfacelet transform%dynamic texture%generalized Gaussian model%Kullback-Leibler ( KL ) distance%Support Vector Machine( SVM)%Euclidean distance
鉴于烟雾检测对火灾预警的重要作用,提出一种基于Surfacelet变换的动态纹理烟雾检测算法。先对图像序列进行Surfacelet变换,再对变换后的系数进行广义高斯建模,获得与系数相对应的模型参数作为特征,最后使用KL距离做相似性度量。与其他3种基于Surfacelet变换的烟雾检测方法进行对比,包括:使用均值和方差作为特征,支持向量机进行分类;使用均值和方差作为特征,欧式距离进行相似性度量;使用广义高斯模型参数作为特征,欧式距离进行相似性度量。实验结果表明,该算法可以提高烟雾检测准确性,降低误检率,有效去除类烟运动物体的干扰。
鑒于煙霧檢測對火災預警的重要作用,提齣一種基于Surfacelet變換的動態紋理煙霧檢測算法。先對圖像序列進行Surfacelet變換,再對變換後的繫數進行廣義高斯建模,穫得與繫數相對應的模型參數作為特徵,最後使用KL距離做相似性度量。與其他3種基于Surfacelet變換的煙霧檢測方法進行對比,包括:使用均值和方差作為特徵,支持嚮量機進行分類;使用均值和方差作為特徵,歐式距離進行相似性度量;使用廣義高斯模型參數作為特徵,歐式距離進行相似性度量。實驗結果錶明,該算法可以提高煙霧檢測準確性,降低誤檢率,有效去除類煙運動物體的榦擾。
감우연무검측대화재예경적중요작용,제출일충기우Surfacelet변환적동태문리연무검측산법。선대도상서렬진행Surfacelet변환,재대변환후적계수진행엄의고사건모,획득여계수상대응적모형삼수작위특정,최후사용KL거리주상사성도량。여기타3충기우Surfacelet변환적연무검측방법진행대비,포괄:사용균치화방차작위특정,지지향량궤진행분류;사용균치화방차작위특정,구식거리진행상사성도량;사용엄의고사모형삼수작위특정,구식거리진행상사성도량。실험결과표명,해산법가이제고연무검측준학성,강저오검솔,유효거제류연운동물체적간우。
Smoke detection plays an important role in early warning of fire, so one dynamic texture recognition algorithm is proposed in this paper. Firstly,the surfacelet transform is performed on image sequences. Then a generalized Gaussian model is built for the coefficients from Surfacelet transform. The obtained model parameters are regarded as feature vector, and finally the Kullback-Leibler ( KL ) distance is used as the similarity measurement method. In experiments,three kinds of Surfacelet based smoke detection methods,including the use of mean and variance as feature and SVM classifier for classification;the use of mean and variance as feature and Euclidean distance as the similarity measurement method;the use of generalized Gaussian model parameters as feature and Euclidean distance as the similarity measurement tool,are implemented and used for comparison. Experimental result shows that,compared with other smoke detection methods,the new algorithm has excellent performance and lower false detection rate.