计算机工程
計算機工程
계산궤공정
COMPUTER ENGINEERING
2015年
2期
193-198
,共6页
多智能体%信息搜索%多源信息%面向对象%Q学习%协同机制
多智能體%信息搜索%多源信息%麵嚮對象%Q學習%協同機製
다지능체%신식수색%다원신식%면향대상%Q학습%협동궤제
multi-Agent%information search%multi-source information%object-oriented%Q learning%collaborative mechanism
针对实时、多源、海量数据条件下用户所需信息的获取问题,提出一种面向对象的、基于多智能体协同的多源信息搜索模型,以对象为中心,在反馈循环搜索的过程中,完善对象描述模型并实现多源数据中关联对象信息的获取,提高多源信息获取的全面性和准确性。设计基于Q学习的协同控制算法,针对马尔科夫对象与非马尔科夫对象给出相应的决策方法。实验结果表明,该协同控制算法比概率转移矩阵及概率统计算法具有更好的信息获取能力。
針對實時、多源、海量數據條件下用戶所需信息的穫取問題,提齣一種麵嚮對象的、基于多智能體協同的多源信息搜索模型,以對象為中心,在反饋循環搜索的過程中,完善對象描述模型併實現多源數據中關聯對象信息的穫取,提高多源信息穫取的全麵性和準確性。設計基于Q學習的協同控製算法,針對馬爾科伕對象與非馬爾科伕對象給齣相應的決策方法。實驗結果錶明,該協同控製算法比概率轉移矩陣及概率統計算法具有更好的信息穫取能力。
침대실시、다원、해량수거조건하용호소수신식적획취문제,제출일충면향대상적、기우다지능체협동적다원신식수색모형,이대상위중심,재반궤순배수색적과정중,완선대상묘술모형병실현다원수거중관련대상신식적획취,제고다원신식획취적전면성화준학성。설계기우Q학습적협동공제산법,침대마이과부대상여비마이과부대상급출상응적결책방법。실험결과표명,해협동공제산법비개솔전이구진급개솔통계산법구유경호적신식획취능력。
A new multi-source information search model based on multi-Agent collaboration is put forward to deal with the problem that under the real time,multi-source and huge information condition. Multi-Agent information search model centers around objects,builds the whole object model by cycling search,and gets the information that users care for. This model has higher intelligent and open-ended features, and it can make multi-source information searing more comprehensive and accurate. Q-learning-based collaborative control algorithm is proposed. The algorithm designs different decision-making methods for Markov objects and non-Markov objects. Experimental results show that the algorithm has better information search ability than probability transfer matrix and probability statistics algorithms.