化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2015年
3期
1001-1006
,共6页
王子宁%周加贝%朱家骅%武珲%陈昌国%刘仕忠
王子寧%週加貝%硃傢驊%武琿%陳昌國%劉仕忠
왕자저%주가패%주가화%무혼%진창국%류사충
二水硫酸钙%溶解%动力学%速率常数%活化能
二水硫痠鈣%溶解%動力學%速率常數%活化能
이수류산개%용해%동역학%속솔상수%활화능
calcium sulfate dihydrate%dissolution%kinetics%rate constants%activation energy
采用电导率法测量匀速旋转的石膏块试样(CaSO4·2H2O,质量分数为98%)在纯水中的溶解速率,数据采集时间间隔1 s,测试期间试样表观形状(7 cm×4 cm×2 cm)和面积(100 cm2)基本不变。在溶解过程为表面反应控制条件下,依据溶解反应动力学模型,拟合得到25、45、65、85℃下二水硫酸钙溶解反应速率常数分别为1.91×10?8、3.46×10?8、4.92×10?8、7.07×10?8 mol·cm?2·s?1,反应级数为1.27。经Arrhenius公式回归得到溶解反应表观活化能为19.07 kJ·mol?1。本实验方法排除了溶解过程试样面积不确定因素,拟合得到的模型参数使动力学方程计算值与实验值更为吻合,更接近溶解速率理论预测文献值。
採用電導率法測量勻速鏇轉的石膏塊試樣(CaSO4·2H2O,質量分數為98%)在純水中的溶解速率,數據採集時間間隔1 s,測試期間試樣錶觀形狀(7 cm×4 cm×2 cm)和麵積(100 cm2)基本不變。在溶解過程為錶麵反應控製條件下,依據溶解反應動力學模型,擬閤得到25、45、65、85℃下二水硫痠鈣溶解反應速率常數分彆為1.91×10?8、3.46×10?8、4.92×10?8、7.07×10?8 mol·cm?2·s?1,反應級數為1.27。經Arrhenius公式迴歸得到溶解反應錶觀活化能為19.07 kJ·mol?1。本實驗方法排除瞭溶解過程試樣麵積不確定因素,擬閤得到的模型參數使動力學方程計算值與實驗值更為吻閤,更接近溶解速率理論預測文獻值。
채용전도솔법측량균속선전적석고괴시양(CaSO4·2H2O,질량분수위98%)재순수중적용해속솔,수거채집시간간격1 s,측시기간시양표관형상(7 cm×4 cm×2 cm)화면적(100 cm2)기본불변。재용해과정위표면반응공제조건하,의거용해반응동역학모형,의합득도25、45、65、85℃하이수류산개용해반응속솔상수분별위1.91×10?8、3.46×10?8、4.92×10?8、7.07×10?8 mol·cm?2·s?1,반응급수위1.27。경Arrhenius공식회귀득도용해반응표관활화능위19.07 kJ·mol?1。본실험방법배제료용해과정시양면적불학정인소,의합득도적모형삼수사동역학방정계산치여실험치경위문합,경접근용해속솔이론예측문헌치。
Dissolution rate of a gypsum (CaSO4·2H2O) sample rotating in pure water was measured by automatically detecting electric conductivity of the solution, in one-second time interval of data acquisition. Superficial shape (7 cm×4 cm×2 cm) and surface area (100 cm2) of the sample were maintained constant basically during measurement. Under surface reaction-controlled dissolution experiment condition, the kinetics model was used for regression of dissolution rate constant (ks) and reaction order (n). The values of ks were 1.91× 10?8, 3.46×10?8, 4.92×10?8, 7.07×10?8 mol·cm?2·s?1 respectively for temperatures 25, 45, 65, 85℃, accommodated by a value of 1.27 for reaction order n. Consequently activation energy of dissolution reaction was correlated 19.07 kJ·mol?1 through the Arrhenius equation. Because of eliminating uncertainty of sample’s surface area in dissolution experiment, the results calculated from the kinetics equation with the model parameters regressed in this paper were more consistent with experimental value and closer to theoretical expectation of dissolution rates in literature.