中国神经再生研究(英文版)
中國神經再生研究(英文版)
중국신경재생연구(영문판)
NERVE REGENERATION RESEARCH
2015年
1期
79-83
,共5页
nerve regeneration%peripheral nerve deficiency%nerve elongator%British Medical Re-search Council scale%neurological function%prognosis%NSFC grants%neural regeneration
Repair techniques for short-distance peripheral nerve defects, including adjacent joint lfexion to reduce the distance between the nerve stump defects, “nerve splint” suturing, and nerve sle eve connection, have some disadvantages. Therefore, we designed a repair technique involving intraoperative tension-free application of a nerve elongator and obtained good outcomes in the repair of short-distance peripheral nerve defects in a previous animal study. The present study compared the clinical outcomes between the use of this nerve elongator and performance of the conventional method in the repair of short-distance transection injuries in human elbows. The 3-, 6-, and 12-month postoperative follow-up results demonstrated that early neurological function recovery was better in the nerve elongation group than in the conventional group, but no signif-icant difference in long-term neurological function recovery was detected between the two gro ups. In the nerve elongation group, the nerves were sutured without tension, and the duration of postoperative immobilization of the elbow was decreased. Elbow function rehabilitation was signiifcantly better in the nerve elongation group than in the control group. Moreover, there were no security risks. The results of this study conifrm that the use of this nerve elongator for repair of short-distance peripheral nerve defects is safe and effective.