计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
5期
132-136
,共5页
集成学习%多特征融合%行为识别
集成學習%多特徵融閤%行為識彆
집성학습%다특정융합%행위식별
ensemble learning%multi-feature fusion%action recognition
基于时空特征的方法是行为识别的主流方法,已经有许多研究学者提出了多种局部时空特征。然而,不同的局部特征所反映的行为信息的侧重点并不一样。通过引入集成学习的方法,对多种特征在分类器层次上进行融合,使得多种特征能够优势互补,从而增强了特征的描述能力,为构建出高效、稳定的行为识别分类器提供了保证。经仿真实验验证,所提出的方法是鲁棒和有效的。
基于時空特徵的方法是行為識彆的主流方法,已經有許多研究學者提齣瞭多種跼部時空特徵。然而,不同的跼部特徵所反映的行為信息的側重點併不一樣。通過引入集成學習的方法,對多種特徵在分類器層次上進行融閤,使得多種特徵能夠優勢互補,從而增彊瞭特徵的描述能力,為構建齣高效、穩定的行為識彆分類器提供瞭保證。經倣真實驗驗證,所提齣的方法是魯棒和有效的。
기우시공특정적방법시행위식별적주류방법,이경유허다연구학자제출료다충국부시공특정。연이,불동적국부특정소반영적행위신식적측중점병불일양。통과인입집성학습적방법,대다충특정재분류기층차상진행융합,사득다충특정능구우세호보,종이증강료특정적묘술능력,위구건출고효、은정적행위식별분류기제공료보증。경방진실험험증,소제출적방법시로봉화유효적。
The approach based on the local spatial-temporal features has emerged to be the mainstream method in action recognition area. And various descriptors of local spatial-temporal feature have been presented by researchers. However, different local features may reflect different emphasis of human activity. In this paper, the ensemble learning methods are introduced to perform a late fusion of multiple features so as to enhance the expressing ability of the local features. By the fusion of features, a more effective and robust action classifier can be built up. And the experimental results demonstrate the robustness and effectiveness of the proposed method.