机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2015年
2期
58-64
,共7页
李微%梁慧%陈荐%杨嘉伟%李贤泽
李微%樑慧%陳薦%楊嘉偉%李賢澤
리미%량혜%진천%양가위%리현택
多孔Cu-Ni-Al合金%高温压缩变形%变形行为%本构关系
多孔Cu-Ni-Al閤金%高溫壓縮變形%變形行為%本構關繫
다공Cu-Ni-Al합금%고온압축변형%변형행위%본구관계
Cu-Ni-Al porous alloy%high temperature compressive deformation%deformation behavior%constitutive relation
采用雾化法制备Cu-Ni-Al粉末,对其进行真空热压烧结制取多孔Cu-Ni-Al合金,研究该材料的微观组织、高温压缩变形行为及其影响因素,分析压缩变形机理。结果表明,多孔Cu合金的抗压强度、弹性模量以及屈服强度随着变形温度的增加、应变速率的减小而减小;多孔Cu合金的压缩变形过程分为初始的线性弹性变形、孔壁的塑性变形、弯曲或断裂的屈服平台区以及孔洞密实化后的塑性变形三个阶段;在高温压缩变形过程中,多孔Cu合金容易在孔洞比较集中,孔壁较薄的地带出现应力集中,发生变形。采用回归分析方法建立多孔Cu合金的高温压缩变形本构方程,得出的计算曲线与试验曲线在压缩变形的第一、二阶段非常吻合,在第三阶段,计算曲线稍微高于试验曲线,分析原因认为可能是多孔Cu合金中的孔隙分布不均有关。
採用霧化法製備Cu-Ni-Al粉末,對其進行真空熱壓燒結製取多孔Cu-Ni-Al閤金,研究該材料的微觀組織、高溫壓縮變形行為及其影響因素,分析壓縮變形機理。結果錶明,多孔Cu閤金的抗壓彊度、彈性模量以及屈服彊度隨著變形溫度的增加、應變速率的減小而減小;多孔Cu閤金的壓縮變形過程分為初始的線性彈性變形、孔壁的塑性變形、彎麯或斷裂的屈服平檯區以及孔洞密實化後的塑性變形三箇階段;在高溫壓縮變形過程中,多孔Cu閤金容易在孔洞比較集中,孔壁較薄的地帶齣現應力集中,髮生變形。採用迴歸分析方法建立多孔Cu閤金的高溫壓縮變形本構方程,得齣的計算麯線與試驗麯線在壓縮變形的第一、二階段非常吻閤,在第三階段,計算麯線稍微高于試驗麯線,分析原因認為可能是多孔Cu閤金中的孔隙分佈不均有關。
채용무화법제비Cu-Ni-Al분말,대기진행진공열압소결제취다공Cu-Ni-Al합금,연구해재료적미관조직、고온압축변형행위급기영향인소,분석압축변형궤리。결과표명,다공Cu합금적항압강도、탄성모량이급굴복강도수착변형온도적증가、응변속솔적감소이감소;다공Cu합금적압축변형과정분위초시적선성탄성변형、공벽적소성변형、만곡혹단렬적굴복평태구이급공동밀실화후적소성변형삼개계단;재고온압축변형과정중,다공Cu합금용역재공동비교집중,공벽교박적지대출현응력집중,발생변형。채용회귀분석방법건립다공Cu합금적고온압축변형본구방정,득출적계산곡선여시험곡선재압축변형적제일、이계단비상문합,재제삼계단,계산곡선초미고우시험곡선,분석원인인위가능시다공Cu합금중적공극분포불균유관。
The Cu-Ni-Al powders are prepared by atomization method, are hot pressing sintered in the vacuum furnace to prepare the porous Cu-Ni-Al alloy. The microstructure, high-temperature compressive deformation behavior and its effect factors are investigated, respectively. The deformation mechanism of the porous Cu alloy is also analyzed and discussed. The results show that the compression strength, elastic modulus and yield strength decrease with increasing temperature and decreasing strain rate. The compression deformation process is classified in terms of three stages of linear elastic deformation, yield platform area with pore wall buckling, collapse, and plastic deformation with pore densification. In the high temperature compression deformation process, stress concentration and deformation are preferred to occur at the areas with pore concentration and thinner pore walls. The compressive mechanical model of the porous Cu alloy is established using the method of linear regression. It is obvious that the calculation curves is in accordance with the experimental curves in the first and second stages of the deformation process, however, at the third stage, the former is above the experimental curves, which is possibly attributed to the inhomogeneous pore distribution of the porous Cu alloy.