城市勘测
城市勘測
성시감측
URBAN GEOTECHNICAL INVESTIGATION & SURVEYING
2015年
1期
142-145
,共4页
传统GM(1,1)%自适应GM(1,1)%残差修正%高铁隧道%变形预测
傳統GM(1,1)%自適應GM(1,1)%殘差脩正%高鐵隧道%變形預測
전통GM(1,1)%자괄응GM(1,1)%잔차수정%고철수도%변형예측
traditional GM(1,1)%self-adaptive GM(1,1)%residual error correction%high-speed railway tunnel%deformation prediction
针对传统GM(1,1)模型在高铁隧道沉降变形分析与预测中精度不理想状况,本文在传统GM(1,1)模型基础上,建立自适应GM(1,1)模型与残差修正GM(1,1)模型并讨论两种改进模型各自优点。利用传统GM(1,1)模型、自适应GM(1,1)模型以及残差修正GM(1,1)模型对某高铁隧道监测点作沉降分析与预测。通过对比,得出自适应GM (1,1)模型与残差修正GM(1,1)模型对原模型的预测曲线相关性和预测精度有一定程度提高;残差修正GM(1,1)模型对于沉降曲线波动较大处仍有较好的拟合与预测效果,其预测效果优于自适应GM(1,1)模型。
針對傳統GM(1,1)模型在高鐵隧道沉降變形分析與預測中精度不理想狀況,本文在傳統GM(1,1)模型基礎上,建立自適應GM(1,1)模型與殘差脩正GM(1,1)模型併討論兩種改進模型各自優點。利用傳統GM(1,1)模型、自適應GM(1,1)模型以及殘差脩正GM(1,1)模型對某高鐵隧道鑑測點作沉降分析與預測。通過對比,得齣自適應GM (1,1)模型與殘差脩正GM(1,1)模型對原模型的預測麯線相關性和預測精度有一定程度提高;殘差脩正GM(1,1)模型對于沉降麯線波動較大處仍有較好的擬閤與預測效果,其預測效果優于自適應GM(1,1)模型。
침대전통GM(1,1)모형재고철수도침강변형분석여예측중정도불이상상황,본문재전통GM(1,1)모형기출상,건립자괄응GM(1,1)모형여잔차수정GM(1,1)모형병토론량충개진모형각자우점。이용전통GM(1,1)모형、자괄응GM(1,1)모형이급잔차수정GM(1,1)모형대모고철수도감측점작침강분석여예측。통과대비,득출자괄응GM (1,1)모형여잔차수정GM(1,1)모형대원모형적예측곡선상관성화예측정도유일정정도제고;잔차수정GM(1,1)모형대우침강곡선파동교대처잉유교호적의합여예측효과,기예측효과우우자괄응GM(1,1)모형。
Aiming at the situation of the precision of traditional GM (1,1) in high-speed railway tunnel settlement deformation analysis and prediction is not ideal .This paper which is based on traditional GM (1,1) model has estab-lished self-adaptive GM(1,1) model and residual error correction GM (1,1) model and discussed their respective ad-vantages.Using traditional GM (1,1) model, self-adaptive GM(1,1) model and residual error correction GM (1,1) model to analyze and predict a High-speed Rail tunnel monitoring points settlement deformation .Through comparing and analyzing, it is concluded that self-adaptive GM (1,1) model and residual error GM (1,1) model improve the predic-tion precision of original model and the correlation of prediction curve in a certain extent;residual error correction GM (1, 1 ) model has a better fitting and prediction effect for the settlement curve with bigger fluctuations , its prediction effect is superior to the self-adaptive GM (1, 1) model.