有色金属科学与工程
有色金屬科學與工程
유색금속과학여공정
JIANGXI NONFERROUS METALS
2015年
1期
111-115
,共5页
孙珅磊%游维雄%肖宗梁%王春香%赖凤琴%刘小林
孫珅磊%遊維雄%肖宗樑%王春香%賴鳳琴%劉小林
손신뢰%유유웅%초종량%왕춘향%뢰봉금%류소림
Y2Zr2O7∶Tm3+%溶胶-凝胶法%发光%浓度猝灭
Y2Zr2O7∶Tm3+%溶膠-凝膠法%髮光%濃度猝滅
Y2Zr2O7∶Tm3+%용효-응효법%발광%농도졸멸
Y2Zr2O7:Tm3+%sol-gel%luminescence%concentration quenching
以柠檬酸为络合剂采用溶胶-凝胶法制备了(Y1-xTmx)2Zr2O7(x=0.005,0.01,0.03,0.05)荧光粉.采用X-射线衍射分析仪(XRD)、扫描电子显微镜(SEM)和荧光光谱仪分别检测了Y2Zr2O7∶Tm3+的晶体结构、颗粒形貌以及样品的荧光光谱.XRD图谱表明,所得到的产物Y2Zr2O7∶Tm3+为单一相的萤石结构,而且Tm3+的掺杂并没有改变其晶体结构.荧光光谱的测试表明,在359 nm波长的紫外光激发下,1000℃下烧结的(Y1-xTmx)2Zr2O7(x=0.01)样品的发光性能最好,发射峰对应于Tm3+的1D2→3F4跃迁和1G4→3H6跃迁,并对其发光机理进行了探讨.样品在454 nm处的发光强度随Tm3+离子掺杂浓度的增加先升高后降低,即出现了浓度猝灭的现象,当Tm3+掺杂浓度摩尔百分比为1%时,样品的发光强度达到最大.
以檸檬痠為絡閤劑採用溶膠-凝膠法製備瞭(Y1-xTmx)2Zr2O7(x=0.005,0.01,0.03,0.05)熒光粉.採用X-射線衍射分析儀(XRD)、掃描電子顯微鏡(SEM)和熒光光譜儀分彆檢測瞭Y2Zr2O7∶Tm3+的晶體結構、顆粒形貌以及樣品的熒光光譜.XRD圖譜錶明,所得到的產物Y2Zr2O7∶Tm3+為單一相的螢石結構,而且Tm3+的摻雜併沒有改變其晶體結構.熒光光譜的測試錶明,在359 nm波長的紫外光激髮下,1000℃下燒結的(Y1-xTmx)2Zr2O7(x=0.01)樣品的髮光性能最好,髮射峰對應于Tm3+的1D2→3F4躍遷和1G4→3H6躍遷,併對其髮光機理進行瞭探討.樣品在454 nm處的髮光彊度隨Tm3+離子摻雜濃度的增加先升高後降低,即齣現瞭濃度猝滅的現象,噹Tm3+摻雜濃度摩爾百分比為1%時,樣品的髮光彊度達到最大.
이저몽산위락합제채용용효-응효법제비료(Y1-xTmx)2Zr2O7(x=0.005,0.01,0.03,0.05)형광분.채용X-사선연사분석의(XRD)、소묘전자현미경(SEM)화형광광보의분별검측료Y2Zr2O7∶Tm3+적정체결구、과립형모이급양품적형광광보.XRD도보표명,소득도적산물Y2Zr2O7∶Tm3+위단일상적형석결구,이차Tm3+적참잡병몰유개변기정체결구.형광광보적측시표명,재359 nm파장적자외광격발하,1000℃하소결적(Y1-xTmx)2Zr2O7(x=0.01)양품적발광성능최호,발사봉대응우Tm3+적1D2→3F4약천화1G4→3H6약천,병대기발광궤리진행료탐토.양품재454 nm처적발광강도수Tm3+리자참잡농도적증가선승고후강저,즉출현료농도졸멸적현상,당Tm3+참잡농도마이백분비위1%시,양품적발광강도체도최대.
(Y1-xTmx)2Zr2O7(x= 0.005,0.01,0.03,0.05) phosphors are synthesized by sol-gel method using citric acid as complexing agent. The structure, morphology and luminescence spectra of the samples are investigated by X-ray diffraction (XRD), SEM and fluorescence spectrophotometer, respectively. The XRD patterns indicate that the structures of samples are characterized by single-phased fluorite structure. The crystal structure has not been changed by the invasion of Tm3+. The best luminescence performance is obtained for the (Y1-xTmx)2Zr2O7(x=0.01) by sintering at 1 000 ℃ under the excitation wavelength at 359 nm. The emissions of 11D2→3F4 and 1G4→3H6 transitions of Tm3+are observed by studying the mechanisms of the two emissions. The emission intensity of 11D2→3F4 transition increases with the adding of Tm3 +-doping concentrations, then reaches the maximum when Tm3+ concentration is at 1 mol % and decreases with increasing Tm3+-doping concentrations, which indicates that the concentration quenching is active when x>0.01.