模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2015年
1期
65-73
,共9页
背景建模%前景检测%直方图%聚类准则
揹景建模%前景檢測%直方圖%聚類準則
배경건모%전경검측%직방도%취류준칙
Background Modeling%Foreground Detection%Histogram%Clustering Criterion
场景中的光照变化及树叶和水面等的不规则运动是建立动态场景背景模型的主要困难。针对该问题,提出一种基于加权直方图的动态背景建模方法。算法首先提出融合图像序列局部空间相关性的加权直方图,并以此作为特征描述动态背景。针对该特征进一步提出一种简洁的特征聚类准则,该准则通过对亮度直方图和色度直方图区分计算聚类特征。在多个标准测试视频上进行试验,并与混合高斯模型( MOG)、标准码本模型( SCBM)、HSV码本模型( HSVCBM)和加权直方图模型( WHM)算法进行比较。实验结果表明,本文算法对场景中的动态变化具有较强的适应性。
場景中的光照變化及樹葉和水麵等的不規則運動是建立動態場景揹景模型的主要睏難。針對該問題,提齣一種基于加權直方圖的動態揹景建模方法。算法首先提齣融閤圖像序列跼部空間相關性的加權直方圖,併以此作為特徵描述動態揹景。針對該特徵進一步提齣一種簡潔的特徵聚類準則,該準則通過對亮度直方圖和色度直方圖區分計算聚類特徵。在多箇標準測試視頻上進行試驗,併與混閤高斯模型( MOG)、標準碼本模型( SCBM)、HSV碼本模型( HSVCBM)和加權直方圖模型( WHM)算法進行比較。實驗結果錶明,本文算法對場景中的動態變化具有較彊的適應性。
장경중적광조변화급수협화수면등적불규칙운동시건립동태장경배경모형적주요곤난。침대해문제,제출일충기우가권직방도적동태배경건모방법。산법수선제출융합도상서렬국부공간상관성적가권직방도,병이차작위특정묘술동태배경。침대해특정진일보제출일충간길적특정취류준칙,해준칙통과대량도직방도화색도직방도구분계산취류특정。재다개표준측시시빈상진행시험,병여혼합고사모형( MOG)、표준마본모형( SCBM)、HSV마본모형( HSVCBM)화가권직방도모형( WHM)산법진행비교。실험결과표명,본문산법대장경중적동태변화구유교강적괄응성。
The illumination variation, waving trees, rippling water and noise are the main problems for the establishing of background model of dynamic scene. Aiming at the problems, a dynamic background modeling method is proposed based on the weighted histogram. In the proposed method, a weighted histogram is firstly defined by fusing the local spatial correlation of the image sequence, and it is regarded as a feature to represent the dynamic scene. Then, a simple clustering criterion for weighted histogram is proposed, which is used to cluster features by calculating luminance and chrominance components of the weighted histogram separately. Compared with the MOG ( Mixture Of Gaussians ) , SCBM ( Standard Codebook Model) , HSVCBM ( HSV CodeBook Model ) and WHM ( Weighted Histogram Model ) , the experimental results on several standard test video sequences show that the proposed method has better adaptability to the dynamic scene.