模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2015年
1期
19-26
,共8页
客流计数%俯视行人检测%梯度方向直方图(HOG)
客流計數%俯視行人檢測%梯度方嚮直方圖(HOG)
객류계수%부시행인검측%제도방향직방도(HOG)
Passenger Flow Counting%Zenithal Pedestrian Detection%Histogram of Oriented Gradient(HOG)
目前已有很多关于行人检测方面的研究,这些研究基本建立在行人竖直站立或行走的平视图上,主要应用于视频监控和车载辅助驾驶等领域,但在实际应用中,有时需要从不同的视角检测行人。文中提出一种针对俯视行人检测方法,该方法将俯视行人头部的梯度方向直方图统计信息作为检测目标的特征。通过训练样本提取的特征向量在支持向量机中进行训练得到分类模型参数,然后提取检测样本的特征向量输入分类模型进行判别。与现有行人检测的梯度方向直方图算子相比,文中特征描述算子突出目标的区域与轮廓特征,在目标分块、特征计算和特征统计方法上均有变化。实验证明算法有效且处理速度明显提升。
目前已有很多關于行人檢測方麵的研究,這些研究基本建立在行人豎直站立或行走的平視圖上,主要應用于視頻鑑控和車載輔助駕駛等領域,但在實際應用中,有時需要從不同的視角檢測行人。文中提齣一種針對俯視行人檢測方法,該方法將俯視行人頭部的梯度方嚮直方圖統計信息作為檢測目標的特徵。通過訓練樣本提取的特徵嚮量在支持嚮量機中進行訓練得到分類模型參數,然後提取檢測樣本的特徵嚮量輸入分類模型進行判彆。與現有行人檢測的梯度方嚮直方圖算子相比,文中特徵描述算子突齣目標的區域與輪廓特徵,在目標分塊、特徵計算和特徵統計方法上均有變化。實驗證明算法有效且處理速度明顯提升。
목전이유흔다관우행인검측방면적연구,저사연구기본건립재행인수직참립혹행주적평시도상,주요응용우시빈감공화차재보조가사등영역,단재실제응용중,유시수요종불동적시각검측행인。문중제출일충침대부시행인검측방법,해방법장부시행인두부적제도방향직방도통계신식작위검측목표적특정。통과훈련양본제취적특정향량재지지향량궤중진행훈련득도분류모형삼수,연후제취검측양본적특정향량수입분류모형진행판별。여현유행인검측적제도방향직방도산자상비,문중특정묘술산자돌출목표적구역여륜곽특정,재목표분괴、특정계산화특정통계방법상균유변화。실험증명산법유효차처리속도명현제승。
There are extensive researches on pedestrian detection, which mostly suppose visible humans observed in flat view and are applied in video surveillance,driving assistance etc. However, sometimes pedestrian detection from another perspective should be considered in practice. In this paper, a histogram of oriented gradients ( HOG ) descriptor is introduced for the zenithal pedestrian head detection. The vectors extracted from training samples are trained in the support vector machine to get the classifier parameters, and then the vectors of test samples are input into the classifier to discriminate which targets are. Compared with the existing methods, the proposed descriptor highlights both the region and the contour of the object. Partitioning blocks are reformed, and the feature calculation and statistical method are changed adaptively to the task. The experimental results show that the proposed method is effective and can be applied to count pedestrians in vertical view with a faster processing speed.