红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2015年
1期
134-140
,共7页
望远镜%风载%CFD%面形精度
望遠鏡%風載%CFD%麵形精度
망원경%풍재%CFD%면형정도
telescope%wind load%CFD%surface accuracy
风载是影响地基望远镜性能的主要因素之一,为了研究风载荷的作用以及对望远镜性能的影响程度,首先建立了望远镜、圆顶和流场的几何模型。然后利用CFD(Computational Fluid Dynamics)分析了在外界风速为10 m/s的情况下,3种不同高角(30o、60o、120o)流场中截面空气速度、压力、湍流动能以及主镜面的静压力的瞬态分布,最后通过有限元方法获得了主镜去除刚体位移后的面形。仿真结果表明,望远镜以不同高角观测时主镜面静压力功率谱密度与Gemini望远镜的实测结果接近,真实模拟了风载荷的作用。由风载引起的镜面变形RMS值分别为3.74E-1 nm,2.5E-2 nm,1.71E-1 nm,满足面形精度要求。
風載是影響地基望遠鏡性能的主要因素之一,為瞭研究風載荷的作用以及對望遠鏡性能的影響程度,首先建立瞭望遠鏡、圓頂和流場的幾何模型。然後利用CFD(Computational Fluid Dynamics)分析瞭在外界風速為10 m/s的情況下,3種不同高角(30o、60o、120o)流場中截麵空氣速度、壓力、湍流動能以及主鏡麵的靜壓力的瞬態分佈,最後通過有限元方法穫得瞭主鏡去除剛體位移後的麵形。倣真結果錶明,望遠鏡以不同高角觀測時主鏡麵靜壓力功率譜密度與Gemini望遠鏡的實測結果接近,真實模擬瞭風載荷的作用。由風載引起的鏡麵變形RMS值分彆為3.74E-1 nm,2.5E-2 nm,1.71E-1 nm,滿足麵形精度要求。
풍재시영향지기망원경성능적주요인소지일,위료연구풍재하적작용이급대망원경성능적영향정도,수선건립료망원경、원정화류장적궤하모형。연후이용CFD(Computational Fluid Dynamics)분석료재외계풍속위10 m/s적정황하,3충불동고각(30o、60o、120o)류장중절면공기속도、압력、단류동능이급주경면적정압력적순태분포,최후통과유한원방법획득료주경거제강체위이후적면형。방진결과표명,망원경이불동고각관측시주경면정압력공솔보밀도여Gemini망원경적실측결과접근,진실모의료풍재하적작용。유풍재인기적경면변형RMS치분별위3.74E-1 nm,2.5E-2 nm,1.71E-1 nm,만족면형정도요구。
Wind load is one of the main factors that affects the performance of ground- based telescopes, in order to investigate the function of wind load and the influence degree on the telescope, firstly, the telescope, dome, and exterior flow field geometry were established. Secondly, Computational Fluid Dynamics (CFD) was used to analyze the instantaneous distribution of the air's velocity, pressure and static pressure on primary mirror, at three different altitude angular(30o, 60o, 120o), when the wind at the speed of 10 m/s. Finally, the primary mirror surface accuracy was gotten after removed the rigid body displacement through the finite element method. The simulation results show that static pressure power spectral density of the primary mirror is close to the measured data of Gemini telescope, better simulate the practical effect of the wind load. The RMS values of the mirror surface deformation caused by wind load are 3.74E- 1 nm, 2.5E- 2 nm, 1.71E- 1 nm meet the surface accuracy requirement.