红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2015年
1期
377-383
,共7页
全球定位系统%相位平滑伪距%极大后验估计%自适应衰减因子卡尔曼滤波
全毬定位繫統%相位平滑偽距%極大後驗估計%自適應衰減因子卡爾曼濾波
전구정위계통%상위평활위거%겁대후험고계%자괄응쇠감인자잡이만려파
GPS%phase smoothing pseudo-range%maximum a posteriori estimation%AFKF
载波相位平滑伪距的主要目的是通过高精度的载波相位测量值作为辅助量,使伪距测量值中、大随机误差得以消减。针对GPS伪距测量中未知时变的噪声,提出基于极大后验时变噪声统计估计器的自适应衰减因子Kalman滤波算法(AFKF),采用衰减的加权因子,使估计器逐渐忘记陈旧数据的作用,同时增加新数据的比重,避免滤波过程的发散。结合载波相位平滑伪距原理,利用AFKF算法对全球导航卫星系统(GNSS)的国际 GNSS 服务组织(IGS)的跟踪站实测数据进行仿真分析,并提出利用伪距双差值及伪距三差值来直观体现不同算法的效果比较,结果表明:与标准Kalman滤波相比,AFKF算法在伪距平滑应用中取得很好的效果。
載波相位平滑偽距的主要目的是通過高精度的載波相位測量值作為輔助量,使偽距測量值中、大隨機誤差得以消減。針對GPS偽距測量中未知時變的譟聲,提齣基于極大後驗時變譟聲統計估計器的自適應衰減因子Kalman濾波算法(AFKF),採用衰減的加權因子,使估計器逐漸忘記陳舊數據的作用,同時增加新數據的比重,避免濾波過程的髮散。結閤載波相位平滑偽距原理,利用AFKF算法對全毬導航衛星繫統(GNSS)的國際 GNSS 服務組織(IGS)的跟蹤站實測數據進行倣真分析,併提齣利用偽距雙差值及偽距三差值來直觀體現不同算法的效果比較,結果錶明:與標準Kalman濾波相比,AFKF算法在偽距平滑應用中取得很好的效果。
재파상위평활위거적주요목적시통과고정도적재파상위측량치작위보조량,사위거측량치중、대수궤오차득이소감。침대GPS위거측량중미지시변적조성,제출기우겁대후험시변조성통계고계기적자괄응쇠감인자Kalman려파산법(AFKF),채용쇠감적가권인자,사고계기축점망기진구수거적작용,동시증가신수거적비중,피면려파과정적발산。결합재파상위평활위거원리,이용AFKF산법대전구도항위성계통(GNSS)적국제 GNSS 복무조직(IGS)적근종참실측수거진행방진분석,병제출이용위거쌍차치급위거삼차치래직관체현불동산법적효과비교,결과표명:여표준Kalman려파상비,AFKF산법재위거평활응용중취득흔호적효과。
The main purpose of carrier phase smoothing pseudo- range is to reduce large random error of pseudo- range measurement values, by using high- precision carrier phase measurement values as the supplementary information. In view of the unknown time - varying noise in GPS pseudo - range measurement, an algorithm of adaptive attenuation factor kalman filter (AFKF) was put forward, which was based on maximum a posteriori (MAP) time- varying noise statistical estimator. In order to avoid the divergence of filtering process, the effect of old data could be gradually forgotten by using estimator with attenuation weighted factors, while the proportion of new data could be increased. Simulation analysis was carried out on the measured data of tracking station of a International Global Navigation Satellite System Service (IGS), by using the AFKF algorithm combining with carrier phase smoothing pseudo- range principle. And the double differential and the three differential pseudo- ranges were proposed to intuitively reflect the effects of different algorithms. Experimental results show that the AFKF algorithm can obtain better effect in application of pseudo- range smoothing, compared with the standard KF algorithm.