红外与激光工程
紅外與激光工程
홍외여격광공정
INFRARED AND LASER ENGINEERING
2015年
1期
327-334
,共8页
高光谱遥感图像%去噪%噪声调整的主成分分析%复小波变换%BivaShrink函数
高光譜遙感圖像%去譟%譟聲調整的主成分分析%複小波變換%BivaShrink函數
고광보요감도상%거조%조성조정적주성분분석%복소파변환%BivaShrink함수
hyperspectral imagery%denoising%NAPCA%complex wavelet transform%BivaShrink function
提出了一种能够良好地保持高光谱遥感图像细节特征的噪声去除方法。该方法首先利用噪声调整的主成分分析(NAPCA)进行特征提取,再利用复小波变换(CWT)对NAPCA变换后的低能量成分进行去噪处理。对此低能量成分的每个波段利用二维复小波去噪,此时复小波系数采用BivaShrink函数进行收缩。然后对低能量成分的每条光谱进行一维复小波变换,利用邻域阈值函数进行小波系数的收缩。对AVIRIS 图像贾斯珀桥、月亮湖和盆地进行的仿真实验表明:该方法去噪后的信噪比与HSSNR相比提高了4.3~7.8 dB,与PCABS相比提高了0.8~0.9 dB,验证了该算法的可行性。真实数据OMIS图像的实验结果验证了该方法的有效性和适用性。
提齣瞭一種能夠良好地保持高光譜遙感圖像細節特徵的譟聲去除方法。該方法首先利用譟聲調整的主成分分析(NAPCA)進行特徵提取,再利用複小波變換(CWT)對NAPCA變換後的低能量成分進行去譟處理。對此低能量成分的每箇波段利用二維複小波去譟,此時複小波繫數採用BivaShrink函數進行收縮。然後對低能量成分的每條光譜進行一維複小波變換,利用鄰域閾值函數進行小波繫數的收縮。對AVIRIS 圖像賈斯珀橋、月亮湖和盆地進行的倣真實驗錶明:該方法去譟後的信譟比與HSSNR相比提高瞭4.3~7.8 dB,與PCABS相比提高瞭0.8~0.9 dB,驗證瞭該算法的可行性。真實數據OMIS圖像的實驗結果驗證瞭該方法的有效性和適用性。
제출료일충능구량호지보지고광보요감도상세절특정적조성거제방법。해방법수선이용조성조정적주성분분석(NAPCA)진행특정제취,재이용복소파변환(CWT)대NAPCA변환후적저능량성분진행거조처리。대차저능량성분적매개파단이용이유복소파거조,차시복소파계수채용BivaShrink함수진행수축。연후대저능량성분적매조광보진행일유복소파변환,이용린역역치함수진행소파계수적수축。대AVIRIS 도상가사박교、월량호화분지진행적방진실험표명:해방법거조후적신조비여HSSNR상비제고료4.3~7.8 dB,여PCABS상비제고료0.8~0.9 dB,험증료해산법적가행성。진실수거OMIS도상적실험결과험증료해방법적유효성화괄용성。
A new denoising algorithm was proposed to keep the fine features of hyperspectral remote sensing imagery effectively. Firstly, the noise-adjust principal components analysis (NAPCA) was performed on the hyperspectral datacube. Then output channels of the low-energy NAPCA were transformed into the wavelet domain by 2- D complex wavelet transform(CWT). The BivaShrink function was used to shrink the wavelet coefficients. And then 1- D CWT denoising method was used to remove the noise of the each spectrum of the low-energy NAPCA datacube. The AVIRIS images Jasper Ridge, Lunar Lake and Low Altitude were used for the simulated experiment. Compared with the HSSNR and the PCABS, the signal-to-noise ratio (SNR) is improved by 4.3- 7.8 dB and 0.8- 0.9 dB via the proposed method in this paper, which shows that the proposed method is feasible. It is shown that the proposed method is correctable and available according to the experimental results of the real datacube OMIS.