计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2015年
2期
386-390
,共5页
三部图%知识推荐%用户冷启动%冷门物品
三部圖%知識推薦%用戶冷啟動%冷門物品
삼부도%지식추천%용호랭계동%랭문물품
tripartite graphs%knowledge recommendation%user cold start%less popular item
针对传统的知识推荐算法存在用户冷启动和冷门物品推荐的问题,提出了一种基于三部图网络结构的知识推荐算法。在计算相似度时引入网络结构中的度,综合考虑项目的度和权值及标签的度和权值对推荐算法的影响。实验结果表明,该算法提高了推荐的个性化和多样性,有效地解决了用户冷启动和冷门物品推荐的问题,改善了推荐效果。
針對傳統的知識推薦算法存在用戶冷啟動和冷門物品推薦的問題,提齣瞭一種基于三部圖網絡結構的知識推薦算法。在計算相似度時引入網絡結構中的度,綜閤攷慮項目的度和權值及標籤的度和權值對推薦算法的影響。實驗結果錶明,該算法提高瞭推薦的箇性化和多樣性,有效地解決瞭用戶冷啟動和冷門物品推薦的問題,改善瞭推薦效果。
침대전통적지식추천산법존재용호랭계동화랭문물품추천적문제,제출료일충기우삼부도망락결구적지식추천산법。재계산상사도시인입망락결구중적도,종합고필항목적도화권치급표첨적도화권치대추천산법적영향。실험결과표명,해산법제고료추천적개성화화다양성,유효지해결료용호랭계동화랭문물품추천적문제,개선료추천효과。
This paper proposed a knowledge recommendation algorithm based on tripartite graphs network structure to solve the problem of the user cold start and less popular item recommendation.It embedded the degree of the network structure into the similarity degree,considered the project’degrees and weights and the label’degrees and weights impacting on the recommenda-tion algorithm.The experimental results show,the algorithm improves the personalized and diversity of recommendation,and solves the problem of user cold start and less popular item recommendation effectively,improves the recommendation effect.