计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2015年
2期
423-426
,共4页
赵增顺%林艳艳%冯翔%王士库%肖同录%李贻斌%侯增广%贾丽
趙增順%林豔豔%馮翔%王士庫%肖同錄%李貽斌%侯增廣%賈麗
조증순%림염염%풍상%왕사고%초동록%리이빈%후증엄%가려
粒子滤波%RBPF滤波器%高斯粒子群
粒子濾波%RBPF濾波器%高斯粒子群
입자려파%RBPF려파기%고사입자군
particle filter%Rao-Blackwellized particle filter (RBPF)%Gaussian particle swarm
针对动态系统目标跟踪问题,RBPF算法通过将高维状态空间分解成易于处理的线性子部分与非线性子部分,并采取不同策略进行滤波估计。为了提高RBPF的计算效率,提出将粒子群优化思想融入到RBPF滤波估计中,凭借粒子群算法卓越的全局搜索能力,对于状态空间中非线性部分,通过粒子群算法驱使所有采样粒子向高似然区域(最优适应值区域)移动;对于线性状态部分,依然利用卡尔曼滤波进行处理。通过多组实验仿真结果对比,PSO-RBPF利用较少采样粒子、耗费较少时间即能获得极佳的估计精度。
針對動態繫統目標跟蹤問題,RBPF算法通過將高維狀態空間分解成易于處理的線性子部分與非線性子部分,併採取不同策略進行濾波估計。為瞭提高RBPF的計算效率,提齣將粒子群優化思想融入到RBPF濾波估計中,憑藉粒子群算法卓越的全跼搜索能力,對于狀態空間中非線性部分,通過粒子群算法驅使所有採樣粒子嚮高似然區域(最優適應值區域)移動;對于線性狀態部分,依然利用卡爾曼濾波進行處理。通過多組實驗倣真結果對比,PSO-RBPF利用較少採樣粒子、耗費較少時間即能穫得極佳的估計精度。
침대동태계통목표근종문제,RBPF산법통과장고유상태공간분해성역우처리적선성자부분여비선성자부분,병채취불동책략진행려파고계。위료제고RBPF적계산효솔,제출장입자군우화사상융입도RBPF려파고계중,빙차입자군산법탁월적전국수색능력,대우상태공간중비선성부분,통과입자군산법구사소유채양입자향고사연구역(최우괄응치구역)이동;대우선성상태부분,의연이용잡이만려파진행처리。통과다조실험방진결과대비,PSO-RBPF이용교소채양입자、모비교소시간즉능획득겁가적고계정도。
The Rao-Blackwellised particle filter (RBPF)algorithm usually performs better than the traditional particle filter (PF)by exploiting conditional dependencies between parts of the state to estimate.By doing so,RBPF can not only improve the estimation precision but also reduce the overall computational complexity.However,the computational burden is still too high for many real-time applications.To improve the efficiency of Rao-Blackwellized particle filter,this paper applied the par-ticle swarm optimization to drive all the particles to the regions where likelihood was high in the nonlinear region.So it only needed a few particles to participate the required computation.The experiments verify the efficiency and the precision of the proposed algorithm.