广西大学学报(自然科学版)
廣西大學學報(自然科學版)
엄서대학학보(자연과학판)
JOURNAL OF GUANGXI UNIVERSITY (NATURAL SCIENCE EDITION)
2015年
1期
73-80
,共8页
体系可靠度%失效模式%积分%验算点%坐标旋转
體繫可靠度%失效模式%積分%驗算點%坐標鏇轉
체계가고도%실효모식%적분%험산점%좌표선전
system reliability%failure modes%integration%checking point%coordinate rotation
为研究复杂混联体系失效区域的快速确定,采用体系失效域可视为若干维变量取定值时条件失效区间的集合的思路,提出了一种基于体系组成方式的失效域确定方法。该方法依据体系失效曲面的混联组成方式,确定出当其余维变量取定值时沿某坐标轴方向直线与体系失效边界的交点,获得对应的条件失效区间。应用该方法对多个算例进行了可靠度分析,结果证实:当失效边界较为复杂时,采用较多积分节点的梯形积分( Trapezoid integration)方法精度较好且稳定;而Gauss-Hermite或Gauss-Legendre积分方法的精度则依赖于计算时选用的坐标系或积分区间,若选用不当则失效概率将会相差数倍以上。研究表明基于体系组成方式的失效域确定方法具有较好的效果;当能接受较多计算量时,采用梯形积分方法来计算复杂混联体系可靠度是一个较好的选择。
為研究複雜混聯體繫失效區域的快速確定,採用體繫失效域可視為若榦維變量取定值時條件失效區間的集閤的思路,提齣瞭一種基于體繫組成方式的失效域確定方法。該方法依據體繫失效麯麵的混聯組成方式,確定齣噹其餘維變量取定值時沿某坐標軸方嚮直線與體繫失效邊界的交點,穫得對應的條件失效區間。應用該方法對多箇算例進行瞭可靠度分析,結果證實:噹失效邊界較為複雜時,採用較多積分節點的梯形積分( Trapezoid integration)方法精度較好且穩定;而Gauss-Hermite或Gauss-Legendre積分方法的精度則依賴于計算時選用的坐標繫或積分區間,若選用不噹則失效概率將會相差數倍以上。研究錶明基于體繫組成方式的失效域確定方法具有較好的效果;噹能接受較多計算量時,採用梯形積分方法來計算複雜混聯體繫可靠度是一箇較好的選擇。
위연구복잡혼련체계실효구역적쾌속학정,채용체계실효역가시위약간유변량취정치시조건실효구간적집합적사로,제출료일충기우체계조성방식적실효역학정방법。해방법의거체계실효곡면적혼련조성방식,학정출당기여유변량취정치시연모좌표축방향직선여체계실효변계적교점,획득대응적조건실효구간。응용해방법대다개산례진행료가고도분석,결과증실:당실효변계교위복잡시,채용교다적분절점적제형적분( Trapezoid integration)방법정도교호차은정;이Gauss-Hermite혹Gauss-Legendre적분방법적정도칙의뢰우계산시선용적좌표계혹적분구간,약선용불당칙실효개솔장회상차수배이상。연구표명기우체계조성방식적실효역학정방법구유교호적효과;당능접수교다계산량시,채용제형적분방법래계산복잡혼련체계가고도시일개교호적선택。
To rapidly determine the failure domains for a complex compound system, a method based on system constitution is proposed to rapidly determine the failure domain by a strategy that the system failure domain is a set of conditional failure domains with several variables that have given values. This method follows the criterions of the compound system failure surface to search for the intersections between a line parallel to a certain coordinate axis and the system failure boundary when other variables have given values. Therefore, the conditional failure domains can be obtained accordingly. Based on this method, reliability analyses of multiple numerical examples are carried out. The results show that when the failure boundary is a complex one, the accuracy of the trapezoid integration would be stable by increasing the number of integral nodes; that the accuracy of the Gauss-Hermite integration or the Gauss-Legendre integration would depend on the coordinates or the integration ranges used for calculation, and if they are used to choose inappropriately, the failure probability would be as much as several times of the actual one. The studies indicate that the pro-posed method based on system constitution perform well for the determination of the system failure domain; that the trapezoid integration method would be better choice for the reliability calculation of complex compound systems if higher computation cost is acceptable.