物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2015年
1期
145-152
,共8页
赵万国%苏丽%周振宁%张海军%鲁礼林%张少伟
趙萬國%囌麗%週振寧%張海軍%魯禮林%張少偉
조만국%소려%주진저%장해군%로례림%장소위
Pd/Co%双金属纳米颗粒%NaBH4%催化制氢
Pd/Co%雙金屬納米顆粒%NaBH4%催化製氫
Pd/Co%쌍금속납미과립%NaBH4%최화제경
Pd/Co%Bimetal nanoparticle%NaBH4%Catalytic hydrogen generation
采用聚乙烯吡咯烷酮(PVP)保护的化学共还原法制备了Pd/Co双金属纳米颗粒,研究了PVP及还原剂(NaBH4)的用量、金属盐浓度、金属比例等对Pd/Co双金属纳米颗粒催化NaBH4制氢性能的影响.透射电子显微镜(TEM)的结果表明,所制备的Pd/Co双金属纳米颗粒的平均粒径在1.5-2.8 nm之间. Pd/Co双金属纳米颗粒(BNPs)的催化活性远高于Pd与Co单金属纳米颗粒的活性;当Pd/Co的理论原子比为1/9时,双金属纳米颗粒的催化活性最高可达15570 mol?mol-1?h-1(文中纳米颗粒的催化活性均为每摩尔Pd的活性).密度泛函理论(DFT)的计算结果表明, Pd 原子与Co原子之间发生电荷转移,使得 Pd 原子带负电而Co原子带正电,荷电的Pd和Co原子进而成为催化反应的活性中心.所制备的Pd/Co双金属纳米颗粒具有很好的催化耐久性,即使重复使用5次后,该催化剂仍具有较高的催化活性,且使用后的纳米颗粒催化剂也没有出现团聚现象.双金属纳米颗粒催化NaBH4水解反应的活化能约为54 kJ?mol-1.
採用聚乙烯吡咯烷酮(PVP)保護的化學共還原法製備瞭Pd/Co雙金屬納米顆粒,研究瞭PVP及還原劑(NaBH4)的用量、金屬鹽濃度、金屬比例等對Pd/Co雙金屬納米顆粒催化NaBH4製氫性能的影響.透射電子顯微鏡(TEM)的結果錶明,所製備的Pd/Co雙金屬納米顆粒的平均粒徑在1.5-2.8 nm之間. Pd/Co雙金屬納米顆粒(BNPs)的催化活性遠高于Pd與Co單金屬納米顆粒的活性;噹Pd/Co的理論原子比為1/9時,雙金屬納米顆粒的催化活性最高可達15570 mol?mol-1?h-1(文中納米顆粒的催化活性均為每摩爾Pd的活性).密度汎函理論(DFT)的計算結果錶明, Pd 原子與Co原子之間髮生電荷轉移,使得 Pd 原子帶負電而Co原子帶正電,荷電的Pd和Co原子進而成為催化反應的活性中心.所製備的Pd/Co雙金屬納米顆粒具有很好的催化耐久性,即使重複使用5次後,該催化劑仍具有較高的催化活性,且使用後的納米顆粒催化劑也沒有齣現糰聚現象.雙金屬納米顆粒催化NaBH4水解反應的活化能約為54 kJ?mol-1.
채용취을희필각완동(PVP)보호적화학공환원법제비료Pd/Co쌍금속납미과립,연구료PVP급환원제(NaBH4)적용량、금속염농도、금속비례등대Pd/Co쌍금속납미과립최화NaBH4제경성능적영향.투사전자현미경(TEM)적결과표명,소제비적Pd/Co쌍금속납미과립적평균립경재1.5-2.8 nm지간. Pd/Co쌍금속납미과립(BNPs)적최화활성원고우Pd여Co단금속납미과립적활성;당Pd/Co적이론원자비위1/9시,쌍금속납미과립적최화활성최고가체15570 mol?mol-1?h-1(문중납미과립적최화활성균위매마이Pd적활성).밀도범함이론(DFT)적계산결과표명, Pd 원자여Co원자지간발생전하전이,사득 Pd 원자대부전이Co원자대정전,하전적Pd화Co원자진이성위최화반응적활성중심.소제비적Pd/Co쌍금속납미과립구유흔호적최화내구성,즉사중복사용5차후,해최화제잉구유교고적최화활성,차사용후적납미과립최화제야몰유출현단취현상.쌍금속납미과립최화NaBH4수해반응적활화능약위54 kJ?mol-1.
Reported here is a facile route for the synthesis of polyvinyl pyrrolidone (PVP)-stabilized Pd/Co bimetallic nanoparticles via a chemical co-reduction process. The effects of molar ratio of PVP and reducing reagent (NaBH4) to the total metal ions, and metal ion concentration and composition on the catalytic activity for hydrogen generation from NaBH4 over Pd/Co bimetal ic nanoparticles (BNPs) were studied. The transmission electron microscopy (TEM) results indicated that the prepared Pd/Co bimetallic nanoparticles, which had an average size of 1.5-2.8 nm, showed much higher catalytic activity than Pd and Co monometal ic nanoparticles (MNPs). The highest catalytic activity of al the prepared bimetallic nanoparticles was 15570 mol?mol-1?h-1 (the activity was normalized by the content of Pd in the BNPs), which was achieved with Pd/Co theoretical atom ratio of 1/9. The higher catalytic activity of the Pd/Co BNPs compared with the corresponding MNPs was ascribed to electronic charge transfer effects; this hypothesis was validated using density functional theory (DFT) calculations, which showed that the Pd atoms were indeed negatively charged, while the Co atoms were positively charged because of electron donation from the Co atoms to the Pd atoms. The positively charged Co atoms and negatively charged Pd atoms acted as catalytic active sites for the hydrolysis reaction of the alkaline NaBH4 solution. Good catalytic stability was observed with the existing high catalytic activity, even after five runs of evaluating the catalytic activity. Moreover, no clear agglomeration was observed in the nanoparticle catalyst used. The corresponding apparent activation energy was determined as 54 kJ?mol-1, based on the kinetic study of the hydrogen generation achieved via the NaBH4 hydrolysis over the PVP-protected Pd10Co90 bimetal ic nanoparticles.