广西科学
廣西科學
엄서과학
GUANGXI SCIENCES
2014年
6期
664-670
,共7页
师德强%吴光%李检秀%龙思宇%黄艳燕%黄纪民%王何健%谢能中%严少敏
師德彊%吳光%李檢秀%龍思宇%黃豔燕%黃紀民%王何健%謝能中%嚴少敏
사덕강%오광%리검수%룡사우%황염연%황기민%왕하건%사능중%엄소민
α-淀粉酶%最适pH值%预测%氨基酸属性
α-澱粉酶%最適pH值%預測%氨基痠屬性
α-정분매%최괄pH치%예측%안기산속성
α-amylase%pH optimum%prediction%amino acid property
【目的】pH值是影响酶催化效率的关键参数,通常需要通过实验方式才能确定生物酶的最适 pH 值,而该方式要消耗较多的人力、物力和时间。因此,有必要发展一种利用酶的简单结构信息即可预测其最适 pH 值的方法。【方法】以20-1前馈反向传播的神经网络为模型,完成535种氨基酸属性对α-淀粉酶 pH 值的拟合。同时,将α-淀粉酶 Amy7C及其54个突变体的数据分为2组,用35个酶作为训练组进行拟合,20个酶作为验证组进行检验,并对不同层次及神经元个数的模型进行比较。【结果】109个氨基酸属性可实现20-1神经网络模型收敛,表明这些氨基酸属性可用于预测α-淀粉酶的最适 pH值,但是不同氨基酸属性预测 pH 值的效果差别较大,只有部分指标预测 pH值的效果较好。多模型的分析结果显示,不同模型对训练组R值的结果具有显著性差异,而对训练组P值、验证组R值和验证组P 值结果无显著性差异。【结论】氨基酸分布概率等属性可用于预测α-淀粉酶的最适 pH值。20-1神经网络模型是预测α-淀粉酶最适 pH值相对理想的模型。
【目的】pH值是影響酶催化效率的關鍵參數,通常需要通過實驗方式纔能確定生物酶的最適 pH 值,而該方式要消耗較多的人力、物力和時間。因此,有必要髮展一種利用酶的簡單結構信息即可預測其最適 pH 值的方法。【方法】以20-1前饋反嚮傳播的神經網絡為模型,完成535種氨基痠屬性對α-澱粉酶 pH 值的擬閤。同時,將α-澱粉酶 Amy7C及其54箇突變體的數據分為2組,用35箇酶作為訓練組進行擬閤,20箇酶作為驗證組進行檢驗,併對不同層次及神經元箇數的模型進行比較。【結果】109箇氨基痠屬性可實現20-1神經網絡模型收斂,錶明這些氨基痠屬性可用于預測α-澱粉酶的最適 pH值,但是不同氨基痠屬性預測 pH 值的效果差彆較大,隻有部分指標預測 pH值的效果較好。多模型的分析結果顯示,不同模型對訓練組R值的結果具有顯著性差異,而對訓練組P值、驗證組R值和驗證組P 值結果無顯著性差異。【結論】氨基痠分佈概率等屬性可用于預測α-澱粉酶的最適 pH值。20-1神經網絡模型是預測α-澱粉酶最適 pH值相對理想的模型。
【목적】pH치시영향매최화효솔적관건삼수,통상수요통과실험방식재능학정생물매적최괄 pH 치,이해방식요소모교다적인력、물력화시간。인차,유필요발전일충이용매적간단결구신식즉가예측기최괄 pH 치적방법。【방법】이20-1전궤반향전파적신경망락위모형,완성535충안기산속성대α-정분매 pH 치적의합。동시,장α-정분매 Amy7C급기54개돌변체적수거분위2조,용35개매작위훈련조진행의합,20개매작위험증조진행검험,병대불동층차급신경원개수적모형진행비교。【결과】109개안기산속성가실현20-1신경망락모형수렴,표명저사안기산속성가용우예측α-정분매적최괄 pH치,단시불동안기산속성예측 pH 치적효과차별교대,지유부분지표예측 pH치적효과교호。다모형적분석결과현시,불동모형대훈련조R치적결과구유현저성차이,이대훈련조P치、험증조R치화험증조P 치결과무현저성차이。【결론】안기산분포개솔등속성가용우예측α-정분매적최괄 pH치。20-1신경망락모형시예측α-정분매최괄 pH치상대이상적모형。
Objective]pH is an important parameter in enzymatic reaction,and its determination is often through experimental path,which is generally costly and time-consuming.So,it is nec-essary to develop methods that can use as simple as possible information to predict pH opti-mum for enzyme.[Methods]20-1 feedforward backpropagation neural network was used to screen 535 amino acids properties as predictors to predict the optimal pH ofα-amylase Amy7C and its 54 mutant,which were divided as two groups.35 of them served as training group for fitting,and the other 20 were treated as valida-tion.The models for different structures and neuron numbers were also compared.[Results]109 amino acid properties,which converged dur-ing fitting in the 20-1 neural network model, could be used to predict optimal pH.Different a-mino acid properties presented different predic-ting effect,and some of them revealed better prediction for optimal pH.The multi-model results showed that there was significant difference between R values in training groups,but there was no significant difference between P values in training groups,as well as R and P values in validation groups.[Conclusion]The distribution probability and some amino acid properties could be used to predict optimal pH ofα-amylase, for which 20-1 feedforward backpropagation neural network was the relative ideal model.