高等学校化学学报
高等學校化學學報
고등학교화학학보
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES
2015年
2期
349-354
,共6页
孙书恒%吴英%周威龙%陈友春%李枫红
孫書恆%吳英%週威龍%陳友春%李楓紅
손서항%오영%주위룡%진우춘%리풍홍
有机小分子电致发光二极管%聚合物电致发光二极管%聚合物太阳能电池%阴极界面层%碱金属盐%功率转换效率
有機小分子電緻髮光二極管%聚閤物電緻髮光二極管%聚閤物太暘能電池%陰極界麵層%堿金屬鹽%功率轉換效率
유궤소분자전치발광이겁관%취합물전치발광이겁관%취합물태양능전지%음겁계면층%감금속염%공솔전환효솔
Organic small molecular light-emitting diode%Polymer light-emitting diode%Polymer solar cell%Cathode interlayer%Alkali metal salt%Power coversion efficiency
以碱金属盐LiF, NaF, CsF和Cs2 CO3作为阴极界面材料,制备了高效率有机小分子电致发光二极管(SMOLEDs)、聚合物电致发光二极管(PLEDs)及聚合物太阳能电池(PSCs).在SMOLEDs和PLEDs中, CsF作为阴极界面层的器件流明效率和功率效率最高.在以聚对苯乙烯撑( P-PPV)为发光层的PLEDs中, CsF作为阴极界面层的器件最大流明效率可达17.85 cd/A,比LiF作为阴极界面层的器件流明效率提高近300%.在以聚(3-己基噻吩)(P3HT):[6,6]-苯基-C61-丁酸甲酯(PC61BM)为活性层的PSCs中,当LiF为阴极界面层时,器件功率转换效率(PCE)可达4.12%.而以 NaF, Cs2CO3和 CsF 为阴极界面层时, PCE 分别为3.72%,3.55%和3.2%.这是因为从上述碱金属盐中分解出来的碱金属原子扩散进入器件的有机层并对有机层进行了n型掺杂,影响了器件的电流密度和效率.
以堿金屬鹽LiF, NaF, CsF和Cs2 CO3作為陰極界麵材料,製備瞭高效率有機小分子電緻髮光二極管(SMOLEDs)、聚閤物電緻髮光二極管(PLEDs)及聚閤物太暘能電池(PSCs).在SMOLEDs和PLEDs中, CsF作為陰極界麵層的器件流明效率和功率效率最高.在以聚對苯乙烯撐( P-PPV)為髮光層的PLEDs中, CsF作為陰極界麵層的器件最大流明效率可達17.85 cd/A,比LiF作為陰極界麵層的器件流明效率提高近300%.在以聚(3-己基噻吩)(P3HT):[6,6]-苯基-C61-丁痠甲酯(PC61BM)為活性層的PSCs中,噹LiF為陰極界麵層時,器件功率轉換效率(PCE)可達4.12%.而以 NaF, Cs2CO3和 CsF 為陰極界麵層時, PCE 分彆為3.72%,3.55%和3.2%.這是因為從上述堿金屬鹽中分解齣來的堿金屬原子擴散進入器件的有機層併對有機層進行瞭n型摻雜,影響瞭器件的電流密度和效率.
이감금속염LiF, NaF, CsF화Cs2 CO3작위음겁계면재료,제비료고효솔유궤소분자전치발광이겁관(SMOLEDs)、취합물전치발광이겁관(PLEDs)급취합물태양능전지(PSCs).재SMOLEDs화PLEDs중, CsF작위음겁계면층적기건류명효솔화공솔효솔최고.재이취대분을희탱( P-PPV)위발광층적PLEDs중, CsF작위음겁계면층적기건최대류명효솔가체17.85 cd/A,비LiF작위음겁계면층적기건류명효솔제고근300%.재이취(3-기기새분)(P3HT):[6,6]-분기-C61-정산갑지(PC61BM)위활성층적PSCs중,당LiF위음겁계면층시,기건공솔전환효솔(PCE)가체4.12%.이이 NaF, Cs2CO3화 CsF 위음겁계면층시, PCE 분별위3.72%,3.55%화3.2%.저시인위종상술감금속염중분해출래적감금속원자확산진입기건적유궤층병대유궤층진행료n형참잡,영향료기건적전류밀도화효솔.
Highly efficient organic small molecular light-emitting diodes( SMOLEDs) , polymer light-emitting diodes(PLEDs) and polymer solar cells(PSCs) were fabricated using alkali metal salts(LiF, NaF, CsF and Cs2 CO3 ) as a cathode interlayer. In SMOLEDs and PLEDs, introducing CsF as a cathode interlayer gives rise to the highest luminous efficiency and power efficiency in the four alkali metal salts. It is apparent that effect of LiF, NaF, CsF and Cs2 CO3 as a cathode interlayer on device performance is different and modification ability sequence of the four alkali metal salts is CsF>Cs2 CO3>NaF>LiF. When LiF is selected as a cathode in-terlayer in PSCs with poly(3-hexylthiophene)(P3HT):phenyl-C61-butyric acid methyl ester(PC60BM) as an active layer, power conversion efficiency ( PCE ) can reach 4.12% while PCE values of PSCs with NaF, Cs2 CO3 and CsF as a cathode interlayer are 3. 72%, 3. 55% and 3. 2%, respectively. We further found that the alkali metals atoms which decomposed from the alkali metal salts and diffused into organic layer may influence the efficiency and current density of the SMOLEDs, PLEDs and PSCs.