中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2015年
3期
512-518
,共7页
杨挺%向文平%王洪涛%盆海波
楊挺%嚮文平%王洪濤%盆海波
양정%향문평%왕홍도%분해파
大数据复杂计算%云计算%对角加边模型%分解协调并行算法%数据中心%能量有效性
大數據複雜計算%雲計算%對角加邊模型%分解協調併行算法%數據中心%能量有效性
대수거복잡계산%운계산%대각가변모형%분해협조병행산법%수거중심%능량유효성
big data complex calculation%cloud computing%block bordered diagonal form (BBDF)%decomposition-coordination algorithm%data center%energy efficiency
随着超大规模区域互联电网的发展,智能电子设备和相量测量单元广泛应用,如何实现对所产生的PB级大数据的高速处理成为完成实时(超实时)计算的关键。云计算作为一种新型的互联网计算模式,为实现电力系统大数据分析和复杂电网高效并行计算提供了可能。针对电力系统基本计算单元对角加边模型(block bordered diagonal form,BBDF)和分解协调并行算法,提出一种低能耗数据中心的优化映射和并行计算方法。依据任务间计算耦合性,将分解协调并行算法进行拆分,并提出依据任务计算复杂度的任务到虚拟机偏好绑定放置方法。随后建立以虚拟机的CPU利用率、内存利用率为约束条件,以节能为目标的Bin-Packing模型,求解 BBDF 分解协调并行计算到数据中心映射的最优配置。通过 CloudSim 平台对 IEEE 118节点电网模型和含有538节点和1133节点的大规模电网进行仿真计算。结果表明,应用虚拟机技术的数据中心计算在时间和系统能耗方面都优于传统单机多线程并行计算。IEEE 118节点算例计算时间降低42.32%,随着系统规模增大,1133节点实际电网计算时间降低75.8%。
隨著超大規模區域互聯電網的髮展,智能電子設備和相量測量單元廣汎應用,如何實現對所產生的PB級大數據的高速處理成為完成實時(超實時)計算的關鍵。雲計算作為一種新型的互聯網計算模式,為實現電力繫統大數據分析和複雜電網高效併行計算提供瞭可能。針對電力繫統基本計算單元對角加邊模型(block bordered diagonal form,BBDF)和分解協調併行算法,提齣一種低能耗數據中心的優化映射和併行計算方法。依據任務間計算耦閤性,將分解協調併行算法進行拆分,併提齣依據任務計算複雜度的任務到虛擬機偏好綁定放置方法。隨後建立以虛擬機的CPU利用率、內存利用率為約束條件,以節能為目標的Bin-Packing模型,求解 BBDF 分解協調併行計算到數據中心映射的最優配置。通過 CloudSim 平檯對 IEEE 118節點電網模型和含有538節點和1133節點的大規模電網進行倣真計算。結果錶明,應用虛擬機技術的數據中心計算在時間和繫統能耗方麵都優于傳統單機多線程併行計算。IEEE 118節點算例計算時間降低42.32%,隨著繫統規模增大,1133節點實際電網計算時間降低75.8%。
수착초대규모구역호련전망적발전,지능전자설비화상량측량단원엄범응용,여하실현대소산생적PB급대수거적고속처리성위완성실시(초실시)계산적관건。운계산작위일충신형적호련망계산모식,위실현전력계통대수거분석화복잡전망고효병행계산제공료가능。침대전력계통기본계산단원대각가변모형(block bordered diagonal form,BBDF)화분해협조병행산법,제출일충저능모수거중심적우화영사화병행계산방법。의거임무간계산우합성,장분해협조병행산법진행탁분,병제출의거임무계산복잡도적임무도허의궤편호방정방치방법。수후건립이허의궤적CPU이용솔、내존이용솔위약속조건,이절능위목표적Bin-Packing모형,구해 BBDF 분해협조병행계산도수거중심영사적최우배치。통과 CloudSim 평태대 IEEE 118절점전망모형화함유538절점화1133절점적대규모전망진행방진계산。결과표명,응용허의궤기술적수거중심계산재시간화계통능모방면도우우전통단궤다선정병행계산。IEEE 118절점산례계산시간강저42.32%,수착계통규모증대,1133절점실제전망계산시간강저75.8%。
With the advent of large-scale regional interconnected power grids as well as the utilization of the phasor measurement unit (PMU) and intelligent electronic devices (IEDs) in electrical power systems becoming more common, the analysis of petabyte sized data has become a primary focus in research communities. Cloud computing, which is a form of data storage on the Internet, increases the possibility to implement a tool for analyzing large datasets in power systems and parallel computing in complex grids. This paper proposed a new optimized method for the mapping of block bordered diagonal form (BBDF) and decomposition-coordination algorithms for cloud computing data centers. Based on the computational complexity of coupling between tasks, the decomposition-coordination algorithm had been split to perform different tasks, and to judge the amount of calculation. A binding placement algorithm also was presented as a method to map the tasks into virtual machines (VM). A new energy-efficient Bin-Packing model was built for the final mapping step, which is the process of transferring the data from the VMs to the data centers. This will be performed while ensuring that the constraints of CPU and memory utilization rate are in check. IEEE 118 node grid model, as well as two large-scale power systems, which utilizes 538 and 1133 nodes systems, were calculated through the CloudSim platform. The results suggest that data centers using the virtual machine technology are more effective than the use of traditional parallel computing methods in terms of time and system energy consumption. In the IEEE 118 nodes system, the total <br> processing time has reduced to 43.2%, and with the system size increasing, the 1133 nodes system experienced a 75.8%decrease.