控制工程
控製工程
공제공정
CONTROL ENGINEERING OF CHINA
2015年
1期
85-90
,共6页
张松涛%孙明晓%李心宁%姜见龙
張鬆濤%孫明曉%李心寧%薑見龍
장송도%손명효%리심저%강견룡
减摇水舱摇摆台%液压伺服系统%解耦控制%H∞回路整形
減搖水艙搖襬檯%液壓伺服繫統%解耦控製%H∞迴路整形
감요수창요파태%액압사복계통%해우공제%H∞회로정형
swing bench of anti-rolling tank%hydraulic servo system%decoupling control%H∞loop shaping
减摇水舱摇摆台是实现位置随动控制的液压伺服系统,其功能是模拟船舶运动姿态和验证减摇水舱的性能。摇摆台运动时,在横摇和横荡2个自由度上存在着相互耦合,且水舱内流体晃荡产生很大的干扰力和力矩,导致建模时参数不确定,对系统精度造成很大影响。为此建立摇摆台耦合运动模型,运用力学理论分析并进行解耦控制,求解流体产生的干扰力和力矩,引入H∞回路整形控制策略设计控制器,最后进行仿真分析和实验验证。结果表明,系统能够准确快速跟踪动态输入的横摇和横荡位移信号,实现了对干扰的估计和补偿,提高了系统的跟踪速度和鲁棒性,更为精确地验证水舱的性能。为模拟船舶运动姿态和其他领域中同类型的液压系统控制问题提供有效的解决方法。
減搖水艙搖襬檯是實現位置隨動控製的液壓伺服繫統,其功能是模擬船舶運動姿態和驗證減搖水艙的性能。搖襬檯運動時,在橫搖和橫盪2箇自由度上存在著相互耦閤,且水艙內流體晃盪產生很大的榦擾力和力矩,導緻建模時參數不確定,對繫統精度造成很大影響。為此建立搖襬檯耦閤運動模型,運用力學理論分析併進行解耦控製,求解流體產生的榦擾力和力矩,引入H∞迴路整形控製策略設計控製器,最後進行倣真分析和實驗驗證。結果錶明,繫統能夠準確快速跟蹤動態輸入的橫搖和橫盪位移信號,實現瞭對榦擾的估計和補償,提高瞭繫統的跟蹤速度和魯棒性,更為精確地驗證水艙的性能。為模擬船舶運動姿態和其他領域中同類型的液壓繫統控製問題提供有效的解決方法。
감요수창요파태시실현위치수동공제적액압사복계통,기공능시모의선박운동자태화험증감요수창적성능。요파태운동시,재횡요화횡탕2개자유도상존재착상호우합,차수창내류체황탕산생흔대적간우력화력구,도치건모시삼수불학정,대계통정도조성흔대영향。위차건립요파태우합운동모형,운용역학이론분석병진행해우공제,구해류체산생적간우력화력구,인입H∞회로정형공제책략설계공제기,최후진행방진분석화실험험증。결과표명,계통능구준학쾌속근종동태수입적횡요화횡탕위이신호,실현료대간우적고계화보상,제고료계통적근종속도화로봉성,경위정학지험증수창적성능。위모의선박운동자태화기타영역중동류형적액압계통공제문제제공유효적해결방법。
Swing bench of anti-rolling tank is a hydraulic servo system which implements the position control. The function of this system is to simulate vessel motion attitude and to verify the performance of anti-rolling rank. When the swing bench is moving, there exists intercoupling on the two degree of freedom of rolling and swaying. Meanwhile, the fluid sloshing in the tank causes lot interference and moment which leads to the uncertainty of parameters at system modeling moment. All these unfavorable conditions mentioned above affect system accuracy greatly. Much work had been done to cope with these unfavorable conditions. Swing bench coupling motion was modeled at first, and the theory of mechanics was applied to analyze and decoupling control to solve the problem of interference and moment caused by the fluid. H∞loop shaping control strategy was introduced to design the controller, and then it was used to model and simulate. Eventually the controller was embedded into a Quanser semi-physical simulation system to perform experimental verification with overall system of swing bench. The result shows that the system is capable of tracing displacement signal of rolling and swaying accurately and quickly which is dynamic-input, implementing the evaluation and compensation to the interference and improving the tracing speed and robustness of system. All these advantages serve more precisely verification of tank performance. This research provides an effective solution for vessel motion attitude simulation and for the same type of hydraulic servo system control problem in other domains.