激光杂志
激光雜誌
격광잡지
LASER JOURNAL
2015年
1期
40-45
,共6页
杨叶芬%刘海%叶成景
楊葉芬%劉海%葉成景
양협분%류해%협성경
人脸识别%双向二维主成分分析%特征提取%局部特征%置信度
人臉識彆%雙嚮二維主成分分析%特徵提取%跼部特徵%置信度
인검식별%쌍향이유주성분분석%특정제취%국부특정%치신도
Face recognition%Bidirectional 2 DPCA%Feature extraction%Local feature%Confidence coefficient
针对(2D)2PCA无法保存某些重要局部特征的问题,提出了一种分块双向二维主成分分析融合局部特征方法。首先,将图像分解为互不重叠的子块,每个子块包含重要的局部信息,利用(2D)2PCA对子块进行特征提取并投影到特征子空间;然后,对每个子块分别设计一个分类器并在一定置信度范围内判别测试样本所属类别。最后,根据所有子块所属类别的置信度之和完成人脸分类。在四个人脸识别数据库上的实验结果表明,相比其它几种人脸识别算法,所提方法取得了更高的识别精度。
針對(2D)2PCA無法保存某些重要跼部特徵的問題,提齣瞭一種分塊雙嚮二維主成分分析融閤跼部特徵方法。首先,將圖像分解為互不重疊的子塊,每箇子塊包含重要的跼部信息,利用(2D)2PCA對子塊進行特徵提取併投影到特徵子空間;然後,對每箇子塊分彆設計一箇分類器併在一定置信度範圍內判彆測試樣本所屬類彆。最後,根據所有子塊所屬類彆的置信度之和完成人臉分類。在四箇人臉識彆數據庫上的實驗結果錶明,相比其它幾種人臉識彆算法,所提方法取得瞭更高的識彆精度。
침대(2D)2PCA무법보존모사중요국부특정적문제,제출료일충분괴쌍향이유주성분분석융합국부특정방법。수선,장도상분해위호불중첩적자괴,매개자괴포함중요적국부신식,이용(2D)2PCA대자괴진행특정제취병투영도특정자공간;연후,대매개자괴분별설계일개분류기병재일정치신도범위내판별측시양본소속유별。최후,근거소유자괴소속유별적치신도지화완성인검분류。재사개인검식별수거고상적실험결과표명,상비기타궤충인검식별산법,소제방법취득료경고적식별정도。
A fusion method of blocked (2D)2PCA and local feature is proposed because of (2D)2PCA unable to preserve some essential local features. Firstly, the image is decomposed into non-overlapping image sub-blocks;each sub-block contains important local information which uses (2D)2PCA projecting sub-blocks into feature subspace and then design a classifier for each sub-block with a certain degree of confidence voting for sample identification category, the final classification result is the sum of confidence with all the sub-blocks. The proposed method has the same fea-ture matrix as (2D)2PCA. Experiments on four databases show that the proposed method achieves better recognition results in terms of recognition accuracy compared to other more advanced face recognition algorithms.