激光杂志
激光雜誌
격광잡지
LASER JOURNAL
2015年
1期
21-26
,共6页
图像增强%自适应模糊增强%贝叶斯萎缩阈值%非线性增益%Laplacian塔式分解
圖像增彊%自適應模糊增彊%貝葉斯萎縮閾值%非線性增益%Laplacian塔式分解
도상증강%자괄응모호증강%패협사위축역치%비선성증익%Laplacian탑식분해
Image enhancement%Adaptive fuzzy enhancement%Bayesian shrinkage threshold%Nonlinear gain%Laplacian pyramid decomposition
为解决部分数字图像对比度偏低、细节模糊等问题,提出了一种非线性拉伸与模糊增强相结合的自适应图像增强算法。使用Laplacian塔式分解对图像进行分解,高频子带系数采用贝叶斯萎缩阈值和非线性增益函数进行处理,以增强后高频子带系数信息熵为目标,自适应选取控制增益曲线形状参数和控制增益强度参数;低频子带系数采用模糊增强算法进行处理,对隶属度函数和模糊增强算子进行改进,并提出了一种模糊增强算子中阈值参数的自适应选取算法。实验结果表明,该算法能有效提高图像对比度和清晰度,突显图像细节信息,且实现了增强参数的自适应选择,更有利于图像的检测与识别。
為解決部分數字圖像對比度偏低、細節模糊等問題,提齣瞭一種非線性拉伸與模糊增彊相結閤的自適應圖像增彊算法。使用Laplacian塔式分解對圖像進行分解,高頻子帶繫數採用貝葉斯萎縮閾值和非線性增益函數進行處理,以增彊後高頻子帶繫數信息熵為目標,自適應選取控製增益麯線形狀參數和控製增益彊度參數;低頻子帶繫數採用模糊增彊算法進行處理,對隸屬度函數和模糊增彊算子進行改進,併提齣瞭一種模糊增彊算子中閾值參數的自適應選取算法。實驗結果錶明,該算法能有效提高圖像對比度和清晰度,突顯圖像細節信息,且實現瞭增彊參數的自適應選擇,更有利于圖像的檢測與識彆。
위해결부분수자도상대비도편저、세절모호등문제,제출료일충비선성랍신여모호증강상결합적자괄응도상증강산법。사용Laplacian탑식분해대도상진행분해,고빈자대계수채용패협사위축역치화비선성증익함수진행처리,이증강후고빈자대계수신식적위목표,자괄응선취공제증익곡선형상삼수화공제증익강도삼수;저빈자대계수채용모호증강산법진행처리,대대속도함수화모호증강산자진행개진,병제출료일충모호증강산자중역치삼수적자괄응선취산법。실험결과표명,해산법능유효제고도상대비도화청석도,돌현도상세절신식,차실현료증강삼수적자괄응선택,경유리우도상적검측여식별。
In order to solve the problems of low contrast and definition in some digital images, an adaptive image enhancement algorithm combined nonlinear extension and fuzzy enhancement was proposed. An input image was de-composed into low-frequency sub-band and high-frequency sub-bands through Laplacian pyramid decomposition. Bayesian shrinkage threshold and nonlinear gain function were used for high-frequency sub-bands. The information entropy of coefficients of enhanced high-frequency sub-bands was regarded as a target, which aim to achieve the con-trol gain curve shape parameter and control gain intensity parameter adaptive selection. Coefficients of low-frequency sub-band were enhanced according to fuzzy enhancement method. The membership functions and fuzzy enhancement operator were improved and propose an adaptive algorithm which can achieve fuzzy enhancement operator threshold pa-rameter adaptive selection. Experimental results show that, the proposed algorithm can improve the contrast and defini-tion of images effectively, highlight the details of images and realize the adaptive selection of enhancement parameters. It is better for the detection and recognition of images.