西安电子科技大学学报(自然科学版)
西安電子科技大學學報(自然科學版)
서안전자과기대학학보(자연과학판)
JOURNAL OF XIDIAN UNIVERSITY(NATURAL SCIENCE)
2015年
1期
187-193
,共7页
变化检测%SAR图像%聚类%粒子群优化
變化檢測%SAR圖像%聚類%粒子群優化
변화검측%SAR도상%취류%입자군우화
change detection%SAR images%clustering%particle swarm optimization
SAR图像变化检测可以转化为对差异图的聚类问题。由于 SAR 图像本身容易受到斑点噪声干扰,为提高聚类效果提出了一种结合邻域信息的自适应粒子群聚类算法。该方法在模糊 C 均值原目标函数基础上,引入中心像素的邻域信息,并通过自适应粒子群的全局搜索来优化聚类中心。该方法还引入了自学习算子即粒子编码中的中心像素的隶属度,能够向其相邻像素的隶属度学习,并据此修正自身的隶属度值相关。实验结果表明,与模糊C均值和量子免疫克隆聚类算法相比,该方法利用了像素的邻域信息,从而增强了抗噪性能。与模糊局部信息C均值算法相比,该方法对图像细节保持能力较强,运行时间也较少。
SAR圖像變化檢測可以轉化為對差異圖的聚類問題。由于 SAR 圖像本身容易受到斑點譟聲榦擾,為提高聚類效果提齣瞭一種結閤鄰域信息的自適應粒子群聚類算法。該方法在模糊 C 均值原目標函數基礎上,引入中心像素的鄰域信息,併通過自適應粒子群的全跼搜索來優化聚類中心。該方法還引入瞭自學習算子即粒子編碼中的中心像素的隸屬度,能夠嚮其相鄰像素的隸屬度學習,併據此脩正自身的隸屬度值相關。實驗結果錶明,與模糊C均值和量子免疫剋隆聚類算法相比,該方法利用瞭像素的鄰域信息,從而增彊瞭抗譟性能。與模糊跼部信息C均值算法相比,該方法對圖像細節保持能力較彊,運行時間也較少。
SAR도상변화검측가이전화위대차이도적취류문제。유우 SAR 도상본신용역수도반점조성간우,위제고취류효과제출료일충결합린역신식적자괄응입자군취류산법。해방법재모호 C 균치원목표함수기출상,인입중심상소적린역신식,병통과자괄응입자군적전국수색래우화취류중심。해방법환인입료자학습산자즉입자편마중적중심상소적대속도,능구향기상린상소적대속도학습,병거차수정자신적대속도치상관。실험결과표명,여모호C균치화양자면역극륭취류산법상비,해방법이용료상소적린역신식,종이증강료항조성능。여모호국부신식C균치산법상비,해방법대도상세절보지능력교강,운행시간야교소。
Change detection for SAR images can be transformed into the clustering for the difference image of SAR images.Since SAR images have speckle noise,a new adaptive particle swarm clustering algorithm using neighborhood information is proposed for improving the clustering results. The degrees of membership of the neighbors around each central pixel are introduced into the new obj ective function based on the fuzzy c-means (FCM) clustering algorithm,and the centers of clusters are optimized by the global searching of adaptive particle swarm.By the self-study operator of the proposed method,the degree of membership of each pixel can be revised based on the degrees of membership of all the neighboring pixels. Experimental results show that the proposed method is less sensitive to noise than the FCM and quantum-inspired immune clonal clustering algorithm by reason of using neighborhood information,and is better than the fuzzy local information c-means clustering algorithm on image detail preservation and run time.