电讯技术
電訊技術
전신기술
TELECOMMUNICATIONS ENGINEERING
2015年
1期
45-49
,共5页
SAR图像处理%模板匹配%空域分布多尺度信息熵%噪声适应性
SAR圖像處理%模闆匹配%空域分佈多呎度信息熵%譟聲適應性
SAR도상처리%모판필배%공역분포다척도신식적%조성괄응성
SAR image processing%template matching%spatial distribution of multi-scale entropy%noise a-daptability
图像的熵和多尺度熵仅考虑像素灰度分布而无视像素在空域分布的情况,基于此的图像匹配容易受噪声的影响而导致误配。为解决此问题,给出了一种空域分布多尺度信息熵( SDMSE),将图像像素在空域的分布与灰度空间分布结合起来,对不同的行或列求多尺度信息熵。在合成孔径雷达( SAR)图像匹配时,对输入图像和基准子图(基准图中和输入图尺寸一样的子图)求SDMSE矩阵,并通过求两矩阵的相似性来度量匹配程度,相似性最大的位置对应匹配点。仿真结果表明,所提匹配算法相比基于熵和多尺度熵的SAR匹配算法有更优异的噪声适应性,匹配误差更小,但计算耗时较多。在如何减少计算时间方面也做了尝试,实验表明尺度个数减少可以大幅减少计算时间而抗噪声性能并没有明显降低。
圖像的熵和多呎度熵僅攷慮像素灰度分佈而無視像素在空域分佈的情況,基于此的圖像匹配容易受譟聲的影響而導緻誤配。為解決此問題,給齣瞭一種空域分佈多呎度信息熵( SDMSE),將圖像像素在空域的分佈與灰度空間分佈結閤起來,對不同的行或列求多呎度信息熵。在閤成孔徑雷達( SAR)圖像匹配時,對輸入圖像和基準子圖(基準圖中和輸入圖呎吋一樣的子圖)求SDMSE矩陣,併通過求兩矩陣的相似性來度量匹配程度,相似性最大的位置對應匹配點。倣真結果錶明,所提匹配算法相比基于熵和多呎度熵的SAR匹配算法有更優異的譟聲適應性,匹配誤差更小,但計算耗時較多。在如何減少計算時間方麵也做瞭嘗試,實驗錶明呎度箇數減少可以大幅減少計算時間而抗譟聲性能併沒有明顯降低。
도상적적화다척도적부고필상소회도분포이무시상소재공역분포적정황,기우차적도상필배용역수조성적영향이도치오배。위해결차문제,급출료일충공역분포다척도신식적( SDMSE),장도상상소재공역적분포여회도공간분포결합기래,대불동적행혹렬구다척도신식적。재합성공경뢰체( SAR)도상필배시,대수입도상화기준자도(기준도중화수입도척촌일양적자도)구SDMSE구진,병통과구량구진적상사성래도량필배정도,상사성최대적위치대응필배점。방진결과표명,소제필배산법상비기우적화다척도적적SAR필배산법유경우이적조성괄응성,필배오차경소,단계산모시교다。재여하감소계산시간방면야주료상시,실험표명척도개수감소가이대폭감소계산시간이항조성성능병몰유명현강저。
When calculating the entropy and multi-scale entropy of image,only intensity distribution of pix-els is considered,but the pixelˊs position information is ignored. Image matching based on entropy and multi-scale entropy is vulnerable to noise so as to lead to mismatches. In order to solve this problem,spatial dis-tribution multi-scale entropy( SDMSE) is proposed. The spatial distribution and intensity distribution of the image pixels are combined. Multistage entropy of each row or column is calculated. In the synthetic aperture radar( SAR) image matching,both the input image and the reference sub-graph are calculated for SDMSE matrix. Correlation coefficients of two matrices are calculated,the position of the maximum of correlation co-efficients corresponds to matching point. Experimental results show that the proposed algorithm has better noise adaptability than the algorithms based on multi-scale image entropy and entropy,and its reliability is better. But the calculation is more time-consuming. How to reduce computation time is tried and experi-ments show that reducing scale number can substantially reduce the computational time but the anti-noise performance does not significantly reduce.