合肥工业大学学报(自然科学版)
閤肥工業大學學報(自然科學版)
합비공업대학학보(자연과학판)
JOURNAL OF HEFEI UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE)
2015年
1期
127-131
,共5页
交通流预测%BP神经网络%遗传算法%模拟退火算法%Metropolis接受准则
交通流預測%BP神經網絡%遺傳算法%模擬退火算法%Metropolis接受準則
교통류예측%BP신경망락%유전산법%모의퇴화산법%Metropolis접수준칙
traffic flow forecast%BP neural network%genetic algorithm (GA )%simulated annealing (SA) algorithm%Metropolis acceptance criteria
为了提高BP神经网络预测模型对短时交通流的预测准确性,文章提出了一种基于改进遗传算法优化BP神经网络的短时交通流预测方法。由于模拟退火算法具有较强的局部搜索能力,能够在搜索过程中避免陷入局部最优解,因此引入模拟退火算法中的Metropolis接受准则来增加遗传算法的局部搜索能力,避免了遗传算法过早收敛和陷入局部最优解。通过改进的遗传算法优化BP 神经网络的权值和阈值,然后训练BP神经网络预测模型以求得最优解。仿真结果表明,该方法对短时交通流预测具有较好的预测精确性。
為瞭提高BP神經網絡預測模型對短時交通流的預測準確性,文章提齣瞭一種基于改進遺傳算法優化BP神經網絡的短時交通流預測方法。由于模擬退火算法具有較彊的跼部搜索能力,能夠在搜索過程中避免陷入跼部最優解,因此引入模擬退火算法中的Metropolis接受準則來增加遺傳算法的跼部搜索能力,避免瞭遺傳算法過早收斂和陷入跼部最優解。通過改進的遺傳算法優化BP 神經網絡的權值和閾值,然後訓練BP神經網絡預測模型以求得最優解。倣真結果錶明,該方法對短時交通流預測具有較好的預測精確性。
위료제고BP신경망락예측모형대단시교통류적예측준학성,문장제출료일충기우개진유전산법우화BP신경망락적단시교통류예측방법。유우모의퇴화산법구유교강적국부수색능력,능구재수색과정중피면함입국부최우해,인차인입모의퇴화산법중적Metropolis접수준칙래증가유전산법적국부수색능력,피면료유전산법과조수렴화함입국부최우해。통과개진적유전산법우화BP 신경망락적권치화역치,연후훈련BP신경망락예측모형이구득최우해。방진결과표명,해방법대단시교통류예측구유교호적예측정학성。
In order to improve the accuracy of short‐term traffic flow forecast based on BP neural net‐work prediction model ,a forecast method based on modified genetic algorithm (GA ) optimized BP neural network is proposed .Because the simulated annealing(SA) algorithm has strong local search‐ing capability and can avoid getting into limited optimum solution in the searching process ,the Me‐tropolis acceptance criteria in the SA algorithm is introduced to GA ,w hich effectively overcomes pre‐mature convergence and getting into limited optimum solution .The modified genetic algorithm is used to optimize BP neural network’s weights and thresholds ,then the BP neural network model is trained to obtain the optimal solution .The simulation results show that this method is accurate in short‐term traffic flow forecast .