杭州电子科技大学学报
杭州電子科技大學學報
항주전자과기대학학보
JOURNAL OF HANGZHOU DIANZI UNIVERSITY
2015年
1期
23-26
,共4页
声纳图像%随机共振%目标检测%支持向量机
聲納圖像%隨機共振%目標檢測%支持嚮量機
성납도상%수궤공진%목표검측%지지향량궤
sonar image%stochastic resonance%target detection%support vector machine
声纳图像作为探测水下目标的主要工具,常伴有非高斯噪声,传统的目标检测方法无法较好地应用于声纳图像。提出利用随机共振系统对图像进行降噪处理,并提取图像的梯度特征作为支持向量机的输入特征向量,最终实现水下目标的智能检测。仿真实验结果表明,通过调节随机共振系统的参数能够提高目标检测率,并且该方法的计算量小,具有一定的应用前景。
聲納圖像作為探測水下目標的主要工具,常伴有非高斯譟聲,傳統的目標檢測方法無法較好地應用于聲納圖像。提齣利用隨機共振繫統對圖像進行降譟處理,併提取圖像的梯度特徵作為支持嚮量機的輸入特徵嚮量,最終實現水下目標的智能檢測。倣真實驗結果錶明,通過調節隨機共振繫統的參數能夠提高目標檢測率,併且該方法的計算量小,具有一定的應用前景。
성납도상작위탐측수하목표적주요공구,상반유비고사조성,전통적목표검측방법무법교호지응용우성납도상。제출이용수궤공진계통대도상진행강조처리,병제취도상적제도특정작위지지향량궤적수입특정향량,최종실현수하목표적지능검측。방진실험결과표명,통과조절수궤공진계통적삼수능구제고목표검측솔,병차해방법적계산량소,구유일정적응용전경。
Sonar imaging , as an important tool for underwater target detection , is often corrupted by non-Gaussian noises , thus the conventional object detection algorithms cannot be effectively applied in sonar image processing .This paper proposes a new method in which a stochastic resonance system is applied to preprocess the images and then normed gradients features are input into the support vector machine , so as to intelligently detect underwater targets .The experiment results show that the proposed approach can improve the target detection rate by tuning the parameters of the stochastic resonance system .Moreover, this method has low computational load and relatively broad application prospect .