吉林大学学报(理学版)
吉林大學學報(理學版)
길림대학학보(이학판)
JOURNAL OF JILIN UNIVERSITY(SCIENCE EDITION)
2015年
1期
68-70
,共3页
非线性离散控制系统%可观测性%Brouwer 不动点定理
非線性離散控製繫統%可觀測性%Brouwer 不動點定理
비선성리산공제계통%가관측성%Brouwer 불동점정리
nonlinear discrete control system%observability%Brouwer’s fixed point theorem
用 Brouwer 不动点定理研究非线性自治离散控制系统和非自治离散控制系统的可观测性。结果表明:当非线性项 f 关于 x 连续、有界,且 r(M)=n 时,自治离散控制系统是局部可观测的;若存在正整数 N 使得矩阵?M 列满秩,且对每个 i ∈[h ,h +N -2](i 为正整数), f (i ,x(i))关于 x(i)连续且有界,则非自治离散控制系统在第 h 阶段是局部可观测的。
用 Brouwer 不動點定理研究非線性自治離散控製繫統和非自治離散控製繫統的可觀測性。結果錶明:噹非線性項 f 關于 x 連續、有界,且 r(M)=n 時,自治離散控製繫統是跼部可觀測的;若存在正整數 N 使得矩陣?M 列滿秩,且對每箇 i ∈[h ,h +N -2](i 為正整數), f (i ,x(i))關于 x(i)連續且有界,則非自治離散控製繫統在第 h 階段是跼部可觀測的。
용 Brouwer 불동점정리연구비선성자치리산공제계통화비자치리산공제계통적가관측성。결과표명:당비선성항 f 관우 x 련속、유계,차 r(M)=n 시,자치리산공제계통시국부가관측적;약존재정정수 N 사득구진?M 렬만질,차대매개 i ∈[h ,h +N -2](i 위정정수), f (i ,x(i))관우 x(i)련속차유계,칙비자치리산공제계통재제 h 계단시국부가관측적。
The authors mainly studied the observability of autonomous discrete control systems and nonautonomous discrete control systems using Brouwer’s fixed point theorem.We found that if the nonlinear part f is continuous in x and bounded and moreover r(M)=n,then the autonomous discrete control system is locally observable.If there exists positive integer N ,such that matrix ?M has column full rank,and f (i ,x (i ))is continuous in x for each i ∈[h ,h +N - 2 ],i is a positive integer and bounded,then the nonautonomous discrete control system is locally observable in step h .