四川大学学报(自然科学版)
四川大學學報(自然科學版)
사천대학학보(자연과학판)
JOURNAL OF SICHUAN UNIVERSITY(NATURAL SCIENCE EDITION)
2015年
1期
51-56
,共6页
无线传感器网络%故障%数据挖掘%分布区间%人工蜂群%小波变换
無線傳感器網絡%故障%數據挖掘%分佈區間%人工蜂群%小波變換
무선전감기망락%고장%수거알굴%분포구간%인공봉군%소파변환
Wireless sensor network%Fault%Data mining%Distribution range%Artificial bee colony%Wavelet transform
为了有效提高无线传感器网络中故障数据的判别能力,本文结合人工蜂群算法提出了一种新的挖掘算法FDMA(Fault Data Mining Algorithm)。该算法首先利用小波变换降低故障数据的突发性,以达到对故障数据的标准化处理。其次,基于关联系数来划分故障数据分布区间,并建立了数据挖掘的目标函数,同时利用人工蜂群算法对目标函数进行优化。最后,通过实际传感器样本数据进行仿真实验,对比研究了FDMA算法与其它算法之间的性能状况(包括吞吐量、延迟时间、丢包率和能耗),结果发现FDMA算法具有较好的适应性。
為瞭有效提高無線傳感器網絡中故障數據的判彆能力,本文結閤人工蜂群算法提齣瞭一種新的挖掘算法FDMA(Fault Data Mining Algorithm)。該算法首先利用小波變換降低故障數據的突髮性,以達到對故障數據的標準化處理。其次,基于關聯繫數來劃分故障數據分佈區間,併建立瞭數據挖掘的目標函數,同時利用人工蜂群算法對目標函數進行優化。最後,通過實際傳感器樣本數據進行倣真實驗,對比研究瞭FDMA算法與其它算法之間的性能狀況(包括吞吐量、延遲時間、丟包率和能耗),結果髮現FDMA算法具有較好的適應性。
위료유효제고무선전감기망락중고장수거적판별능력,본문결합인공봉군산법제출료일충신적알굴산법FDMA(Fault Data Mining Algorithm)。해산법수선이용소파변환강저고장수거적돌발성,이체도대고장수거적표준화처리。기차,기우관련계수래화분고장수거분포구간,병건립료수거알굴적목표함수,동시이용인공봉군산법대목표함수진행우화。최후,통과실제전감기양본수거진행방진실험,대비연구료FDMA산법여기타산법지간적성능상황(포괄탄토량、연지시간、주포솔화능모),결과발현FDMA산법구유교호적괄응성。
In order to effectively improve the identification ability for fault data of wireless sensor net-work,a new mining algorithm FDMA (Fault Data Mining Algorithm)is proposed by artificial bee colo-ny.In this algorithm,the burst of fault data is reduced to be standardization with wavelet transform, and the distribution range is divided by correlation coefficient.Then,the obj ective function is built to mining fault data,and it is optimized with artificial bee colony.Finally,a simulation with actual sensors sample data was conducted to study the performance between FDMA and other algorithm,such as throughput,time delay,packet dropping rate and energy consumption.The results show that,FDMA has better adaptability.