物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2015年
2期
268-276
,共9页
张远航%王志远%师春生%刘恩佐%何春年%赵乃勤
張遠航%王誌遠%師春生%劉恩佐%何春年%趙迺勤
장원항%왕지원%사춘생%류은좌%하춘년%조내근
微孔%水热法%浸渍%表面官能团%循环性能%倍率性能
微孔%水熱法%浸漬%錶麵官能糰%循環性能%倍率性能
미공%수열법%침지%표면관능단%순배성능%배솔성능
Micropore%Hydrothermal method%Impregnation%Surface functional group%Cycling performance%Rate capability
利用水热法制备了粒径为90-130 nm的多孔硬碳球,并通过浸渍与煅烧的方法制备了硬碳球均匀负载纳米氧化镍颗粒(~10 nm)复合材料。硬碳球的表面官能团和内部的微孔保证了氧化镍颗粒在硬碳上的均匀分布。在100 mA?g-1的电流密度下,复合材料电极首次充电比容量高达764 mAh?g-1;在100 mA?g-1的电流密度下循环100个周期后电极充电比容量保持在777 mAh?g-1,容量保持率为101%;800 mA?g-1电流密度下电极的充电比容量达380 mAh?g-1,显示复合材料电极具有优异的循环性能和倍率性能。硬碳的表面官能团和内部微孔为氧化镍提供了优先形核位点,保证了二者的牢固结合,使复合材料获得了“协同效应”,从而使复合电极具备更短的锂离子扩散路径、更高的电导率和更多的锂离子脱嵌位点。这种方法还可用于制备硬碳/其他金属氧化物复合材料。
利用水熱法製備瞭粒徑為90-130 nm的多孔硬碳毬,併通過浸漬與煅燒的方法製備瞭硬碳毬均勻負載納米氧化鎳顆粒(~10 nm)複閤材料。硬碳毬的錶麵官能糰和內部的微孔保證瞭氧化鎳顆粒在硬碳上的均勻分佈。在100 mA?g-1的電流密度下,複閤材料電極首次充電比容量高達764 mAh?g-1;在100 mA?g-1的電流密度下循環100箇週期後電極充電比容量保持在777 mAh?g-1,容量保持率為101%;800 mA?g-1電流密度下電極的充電比容量達380 mAh?g-1,顯示複閤材料電極具有優異的循環性能和倍率性能。硬碳的錶麵官能糰和內部微孔為氧化鎳提供瞭優先形覈位點,保證瞭二者的牢固結閤,使複閤材料穫得瞭“協同效應”,從而使複閤電極具備更短的鋰離子擴散路徑、更高的電導率和更多的鋰離子脫嵌位點。這種方法還可用于製備硬碳/其他金屬氧化物複閤材料。
이용수열법제비료립경위90-130 nm적다공경탄구,병통과침지여단소적방법제비료경탄구균균부재납미양화얼과립(~10 nm)복합재료。경탄구적표면관능단화내부적미공보증료양화얼과립재경탄상적균균분포。재100 mA?g-1적전류밀도하,복합재료전겁수차충전비용량고체764 mAh?g-1;재100 mA?g-1적전류밀도하순배100개주기후전겁충전비용량보지재777 mAh?g-1,용량보지솔위101%;800 mA?g-1전류밀도하전겁적충전비용량체380 mAh?g-1,현시복합재료전겁구유우이적순배성능화배솔성능。경탄적표면관능단화내부미공위양화얼제공료우선형핵위점,보증료이자적뢰고결합,사복합재료획득료“협동효응”,종이사복합전겁구비경단적리리자확산로경、경고적전도솔화경다적리리자탈감위점。저충방법환가용우제비경탄/기타금속양화물복합재료。
Uniform nickel oxide nanoparticles (~10 nm) embedded in porous hard carbon (HC) spheres (90-130 nm) for high performance lithium ion battery anode materials were synthesized via a hydrothermal method fol owed by impregnation and calcination. The HC spheres, which had abundant micropores and plentiful surface functional groups, al owed firm embedding and uniform dispersion of the NiO nanoparticles. The as-prepared HC/NiO composite anode exhibited excel ent electrochemical performance, including high reversible capacity (764 mAh?g-1), good cycling stability (a high specific capacity of 777 mAh?g-1 after the 100th cycle at a current density of 100 mA?g-1, a capacity retention rate of 101%), and high rate capability (380 mAh?g-1 even at 800 mA?g-1). These excel ent electrochemical properties were attributed to the unique structure of NiO nanoparticles tightly embedded in a hard carbon matrix. Anode materials with such a structure have the advantages of improved electronic conductivity, more accessible active sites for lithium ion insertion, and short diffusion paths for lithium ions and electrons. The observed“synergistic effects”between the hard carbon and NiO represent an advance in the electrochemical performance of such composites. The present method is an attractive route for preparing other hard carbon/metal oxide composite anodes for lithium ion batteries.