作物学报
作物學報
작물학보
ACTA AGRONOMICA SINICA
2015年
2期
187-196
,共10页
张红梅%李海朝%自翔%顾和平%袁星星%陈华涛%崔晓艳%陈新%卢为国
張紅梅%李海朝%自翔%顧和平%袁星星%陳華濤%崔曉豔%陳新%盧為國
장홍매%리해조%자상%고화평%원성성%진화도%최효염%진신%로위국
大豆%籽粒%维生素E含量%QTL定位
大豆%籽粒%維生素E含量%QTL定位
대두%자립%유생소E함량%QTL정위
Soybean [Glycine max (L.) Merr.]%Seed%Vitamin E content%QTL mapping
维生素 E (VE)具有提高人体免疫力、抗癌、预防心血管疾病等保健作用,从大豆中提取的 VE 安全性更高。本研究采用高效液相色谱技术(HPLC)检测大豆 BIEX 群体(Essex×ZDD2315)维生素 E 的α-生育酚、γ-生育酚和δ-生育酚含量。应用 QTLNetwork 2.1软件分别检测到8个和12对控制大豆维生素 E 及组分含量的加性和互作 QTL。α-生育酚含量加性和互作 QTL 累计贡献值分别为8.68%(2个)和15.57%(4对),γ-生育酚含量加性和互作 QTL 累计贡献值分别为8.59%(2个)和11.57%(2对),δ-生育酚含量加性和互作 QTL 累计贡献值分别为5.44%(1个)和17.61%(3对),维生素 E 总含量的加性和互作 QTL 累计贡献值分别为11.39%(3个)和9.48%(3对)。未检测到维生素 E 及组分含量和环境互作的 QTL。未定位到的微效 QTL 累计贡献值为66.16%~75.32%,说明未定位到的微效基因的变异占2/3以上。各性状的遗传构成中,未检测出的微效 QTL 份额最大,加性 QTL 和互作 QTL 贡献相差不大。在育种中应考虑常规方法聚合微效 QTL 与标记辅助方法聚合主要 QTL 相结合。
維生素 E (VE)具有提高人體免疫力、抗癌、預防心血管疾病等保健作用,從大豆中提取的 VE 安全性更高。本研究採用高效液相色譜技術(HPLC)檢測大豆 BIEX 群體(Essex×ZDD2315)維生素 E 的α-生育酚、γ-生育酚和δ-生育酚含量。應用 QTLNetwork 2.1軟件分彆檢測到8箇和12對控製大豆維生素 E 及組分含量的加性和互作 QTL。α-生育酚含量加性和互作 QTL 纍計貢獻值分彆為8.68%(2箇)和15.57%(4對),γ-生育酚含量加性和互作 QTL 纍計貢獻值分彆為8.59%(2箇)和11.57%(2對),δ-生育酚含量加性和互作 QTL 纍計貢獻值分彆為5.44%(1箇)和17.61%(3對),維生素 E 總含量的加性和互作 QTL 纍計貢獻值分彆為11.39%(3箇)和9.48%(3對)。未檢測到維生素 E 及組分含量和環境互作的 QTL。未定位到的微效 QTL 纍計貢獻值為66.16%~75.32%,說明未定位到的微效基因的變異佔2/3以上。各性狀的遺傳構成中,未檢測齣的微效 QTL 份額最大,加性 QTL 和互作 QTL 貢獻相差不大。在育種中應攷慮常規方法聚閤微效 QTL 與標記輔助方法聚閤主要 QTL 相結閤。
유생소 E (VE)구유제고인체면역력、항암、예방심혈관질병등보건작용,종대두중제취적 VE 안전성경고。본연구채용고효액상색보기술(HPLC)검측대두 BIEX 군체(Essex×ZDD2315)유생소 E 적α-생육분、γ-생육분화δ-생육분함량。응용 QTLNetwork 2.1연건분별검측도8개화12대공제대두유생소 E 급조분함량적가성화호작 QTL。α-생육분함량가성화호작 QTL 루계공헌치분별위8.68%(2개)화15.57%(4대),γ-생육분함량가성화호작 QTL 루계공헌치분별위8.59%(2개)화11.57%(2대),δ-생육분함량가성화호작 QTL 루계공헌치분별위5.44%(1개)화17.61%(3대),유생소 E 총함량적가성화호작 QTL 루계공헌치분별위11.39%(3개)화9.48%(3대)。미검측도유생소 E 급조분함량화배경호작적 QTL。미정위도적미효 QTL 루계공헌치위66.16%~75.32%,설명미정위도적미효기인적변이점2/3이상。각성상적유전구성중,미검측출적미효 QTL 빈액최대,가성 QTL 화호작 QTL 공헌상차불대。재육충중응고필상규방법취합미효 QTL 여표기보조방법취합주요 QTL 상결합。
Vitamin E has effects on human immunity, anti-cancer and prevention of cardiovascular disease. Vitamin E from soy-bean has the advantages of higher security and higher human body absorption rate. The objective of the present study was to map the additive, additive × additive (epistasis), additive × year and epistasis × year QTLs for vitamin E and relative tocopherol con-tents with the RIL population BIEX (Essex×ZDD2315) using HPLC (high performance liquid chromatography) method and soft-ware QTLNetwork 2.1. Eight additive QTLs and twelve additive × additive (epistasis) QTLs were detected for vitamin E and relative tocopherol contents. The contributions to the phenotypic variances of additive QTL and epistatic QTL pairs were 8.68%(two QTLs) and 15.57% (four pairs) for α-tocopherol, 8.59% (two QTL) and 11.57% (two pairs) for γ-tocopherol, 5.44% (one QTL) and 17.61% (three pairs) for δ-tocopherol and 11.39% (three QTL) and 9.48% (three pairs) for total vitamin E contents, respectively. Those of additive and epistatic QTLs by year interaction were not found. The accumulated contribution of the un-mapped minor QTLs was 66.16%–75.32%, indicating the variance of unmapped minor QTLs accounting for more than two thirds. In genetic composition, undetected minor QTLs accounted for a considerably large part additive QTLs and epistatic QTLs were nearly equal in α-tocopherol, γ-tocopherol, δ-tocopherol and total vitamin E contents. Accordingly, in breeding for vitamin E con-tents, the strategy of pyramiding multiple QTLs, both additive and epistatic, by using marker-assisted selection combined with accumulating minor effect QTLs through conversional procedures should be considered.