作物学报
作物學報
작물학보
ACTA AGRONOMICA SINICA
2015年
2期
318-328
,共11页
张伟欣%曹宏鑫%朱艳%刘岩%张文宇%陈昱利%傅坤亚
張偉訢%曹宏鑫%硃豔%劉巖%張文宇%陳昱利%傅坤亞
장위흔%조굉흠%주염%류암%장문우%진욱리%부곤아
油菜%叶片%生物量%形态结构%模型
油菜%葉片%生物量%形態結構%模型
유채%협편%생물량%형태결구%모형
Rapeseed (Brassica napus L.)%Leaf blade%Biomass%Morphological structure%Model
油菜越冬前的形态建成是油菜苗后期乃至整个生长中、后期的物质基础,叶片是该期最重要的营养器官。为了明确油菜植株的形态结构要素与器官生物量的关系,以3个甘蓝型油菜品种为材料,于2011—2013年分别设置品种和肥料试验、品种、肥料和密度试验、品种试验,越冬前测定油菜植株不同叶位叶片形态指标,分析油菜主茎叶片形态参数与叶片干物重的关系,构建了基于生物量的油菜越冬前植株叶片空间形态结构模型。建模后以独立试验数据检验,除短柄长、叶切角和叶弦角、不施肥品种叶片干物重分配系数值(partitioning coefficient of leaf blade dry weight, CPLB)误差较大外,油菜越冬前植株叶片空间形态结构模型观察值与模拟值一致性较好,所建模型可靠性较高,具有一定的解释性。
油菜越鼕前的形態建成是油菜苗後期迺至整箇生長中、後期的物質基礎,葉片是該期最重要的營養器官。為瞭明確油菜植株的形態結構要素與器官生物量的關繫,以3箇甘藍型油菜品種為材料,于2011—2013年分彆設置品種和肥料試驗、品種、肥料和密度試驗、品種試驗,越鼕前測定油菜植株不同葉位葉片形態指標,分析油菜主莖葉片形態參數與葉片榦物重的關繫,構建瞭基于生物量的油菜越鼕前植株葉片空間形態結構模型。建模後以獨立試驗數據檢驗,除短柄長、葉切角和葉絃角、不施肥品種葉片榦物重分配繫數值(partitioning coefficient of leaf blade dry weight, CPLB)誤差較大外,油菜越鼕前植株葉片空間形態結構模型觀察值與模擬值一緻性較好,所建模型可靠性較高,具有一定的解釋性。
유채월동전적형태건성시유채묘후기내지정개생장중、후기적물질기출,협편시해기최중요적영양기관。위료명학유채식주적형태결구요소여기관생물량적관계,이3개감람형유채품충위재료,우2011—2013년분별설치품충화비료시험、품충、비료화밀도시험、품충시험,월동전측정유채식주불동협위협편형태지표,분석유채주경협편형태삼수여협편간물중적관계,구건료기우생물량적유채월동전식주협편공간형태결구모형。건모후이독립시험수거검험,제단병장、협절각화협현각、불시비품충협편간물중분배계수치(partitioning coefficient of leaf blade dry weight, CPLB)오차교대외,유채월동전식주협편공간형태결구모형관찰치여모의치일치성교호,소건모형가고성교고,구유일정적해석성。
Rapeseed morphogenesis at pre-overwintering stage is the basis of growth and development of rapeseed in whole growth stage, and the leaf blades are important vegetative organ in this stage. To quantify the relationships between rapeseed plant architecture indices and the corresponding organ biomass, we used three cultivars including (V1) Ningyou 18 (conventional varie-ty), (V2) Ningyou 16 (conventional variety), and (V3) Ningza 19 (hybrid variety) in the field experiments, and designed treatment of variety-fertilizer, variety-fertilizer-density, and variety tests in 2011–2012 and 2012–2013, with three fertilizer levels of no fer-tilizer, normal fertilizer (N, P2O5, K2O are 90 kg ha–1), and high fertilizer (N, P2O5, K2O are 180 kg ha–1), and three density levels of D1 (6×104 plant ha–1), D2 (1.2×105 plant ha–1), and D3 (1.8×105 plant ha–1). Morphological indices were determined at pre-overwintering stage, the biomass-based rapeseed aboveground structure model was established with morphological indices, and the relationships between leaf blade indices and leaf blade biomass were analyzed. The models were verified using independ-ent experiment data in 2011–2012, and 2012–2013, showing that the simulated values from the rapeseed plant leaf space morpho-logical structure models, such as leaf blade length, leaf blade width, leaf blade bowstring length, leaf blade petiole length, and leaf blade angle from 2011 to 2012 were goodness of fit to observed values, and their da values and RMSE values were –0.231 cm, 2.102 cm (n=63); –0.273 cm, 0.484 cm (n=63); –0.343 cm, 1.963 cm (n=63); 0.412 cm, 2.095 cm (n=36); –0.635 cm, 1.006 cm (n=27); 4.421°, 14.734° (n=63); 6.642°, 21.817° (n=63), respectively. The correlation between observation and simulation in the morphological indices were significant at P<0.001, but the dap values were less than 5% for the leaf blade length and the leaf blade bowstring length, which indicated that these models’ accuracy is high. The simulated values of the models had better consistency and better reliability with the observed values at pre-overwintering stage except for petiole length of the short-petiole leaves, leaf tangent angle, leaf bowstring angle, and the CPLB (partitioning coefficient of blade dry weight) under the condition of no fertil-izer.