软件
軟件
연건
SOFT WARE
2014年
12期
49-57
,共9页
计算机科学技术其他学科%异常检测%传感器数据%局部异常%全局异常%滑动窗口
計算機科學技術其他學科%異常檢測%傳感器數據%跼部異常%全跼異常%滑動窗口
계산궤과학기술기타학과%이상검측%전감기수거%국부이상%전국이상%활동창구
Other Disciplines of Computer science and technology%Outlier Detection%Sensor Data%Local Outlier%Global Outlier%Sliding Window
数据质量是物联网发展所面临的重大挑战,数据异常检测能实现数据质量提升与潜在信息挖掘。在智能家居等小型物联网场景中数据空间相关性严重不足,因此只能利用时间相关性实现对单传感器数据的异常检测。本文给出基于距离的滑动窗口异常检测算法,通过只处理新加入和刚离开窗口的数据降低时间复杂度,只存储数据对象的 k 个邻居以降低空间复杂度。此外,本文根据滑动窗口内局部异常和全局异常的定义,设计异常检测的处理流程,并借助真实数据实现算法仿真,以检测率 DR 和误检率 FR 为检测指标分析参数对检测结果的影响。从仿真结果可知,该算法能实现较好的检测效果,局部异常检测能保证高 DR,全局异常检测能保证低 FR。
數據質量是物聯網髮展所麵臨的重大挑戰,數據異常檢測能實現數據質量提升與潛在信息挖掘。在智能傢居等小型物聯網場景中數據空間相關性嚴重不足,因此隻能利用時間相關性實現對單傳感器數據的異常檢測。本文給齣基于距離的滑動窗口異常檢測算法,通過隻處理新加入和剛離開窗口的數據降低時間複雜度,隻存儲數據對象的 k 箇鄰居以降低空間複雜度。此外,本文根據滑動窗口內跼部異常和全跼異常的定義,設計異常檢測的處理流程,併藉助真實數據實現算法倣真,以檢測率 DR 和誤檢率 FR 為檢測指標分析參數對檢測結果的影響。從倣真結果可知,該算法能實現較好的檢測效果,跼部異常檢測能保證高 DR,全跼異常檢測能保證低 FR。
수거질량시물련망발전소면림적중대도전,수거이상검측능실현수거질량제승여잠재신식알굴。재지능가거등소형물련망장경중수거공간상관성엄중불족,인차지능이용시간상관성실현대단전감기수거적이상검측。본문급출기우거리적활동창구이상검측산법,통과지처리신가입화강리개창구적수거강저시간복잡도,지존저수거대상적 k 개린거이강저공간복잡도。차외,본문근거활동창구내국부이상화전국이상적정의,설계이상검측적처리류정,병차조진실수거실현산법방진,이검측솔 DR 화오검솔 FR 위검측지표분석삼수대검측결과적영향。종방진결과가지,해산법능실현교호적검측효과,국부이상검측능보증고 DR,전국이상검측능보증저 FR。
Data quality is a major challenge of the web of things(WoT), data quality can be improved and the underlying information can be mined by detecting outlier in WoT data. The data spatial correlation is serious shortage in some small scale scenarios, such as smart home, it can only use the time correlation for single sensor data outlier detection. In this paper, a detection algorithm based on the distance outlier for sliding windows was given, the time complexity of the algorithm was reduced by only handling the new input instance and leaving instance, moreover, by just storing the k neighbors of the in-stance, the space complexity was reduced. Besides, based on the definition of local outlier and global outlier in sliding win-dows, this paper designed the process of outlier detection. The algorithm was simulated by using the real data from the smart home demo scenario, the detection rate (DR) and false alarm rate (FR) were the detection index of the algorithm to analyze the parameters affect of the detection results. The simulation results show that the algorithm can reach better detec-tion results, local outlier detection can achieve higher DR, for global outlier to ensure low FR.