江西科技师范大学学报
江西科技師範大學學報
강서과기사범대학학보
Journal of Jiangxi Science & Technology Normal University
2014年
6期
43-47
,共5页
Picard算子%绝对连续函数%收敛阶
Picard算子%絕對連續函數%收斂階
Picard산자%절대련속함수%수렴계
Picard operators%absolutely continuous function%degree of convergence
进一步研究了Picard算子Pn (f,x)=n2+∞-∞乙 f(t)e-n t-x dt的逼近性质,利用概率型算子基函数的概率性质,通过直接计算相关函数关于Laplace分布的数学期望,导出Picard算子对绝对连续函数的一个新收敛阶的估计。
進一步研究瞭Picard算子Pn (f,x)=n2+∞-∞乙 f(t)e-n t-x dt的逼近性質,利用概率型算子基函數的概率性質,通過直接計算相關函數關于Laplace分佈的數學期望,導齣Picard算子對絕對連續函數的一箇新收斂階的估計。
진일보연구료Picard산자Pn (f,x)=n2+∞-∞을 f(t)e-n t-x dt적핍근성질,이용개솔형산자기함수적개솔성질,통과직접계산상관함수관우Laplace분포적수학기망,도출Picard산자대절대련속함수적일개신수렴계적고계。
the approximation properties of Picard operators Pn (f,x)=n2 +∞-∞乙 f (t)e-n t-x dt are discussed in this paper. Based on some properties of the base functions of probabilistic operators, the expectation of the correlation function in Laplace distribution is directly calculated, and then a new estimation on the new order of convergence of Picard operators for any absolutely continuous function is proposed.