价值工程
價值工程
개치공정
VALUE ENGINEERING
2015年
5期
315-317
,共3页
白承飞%张丛光%向隆%陈秀荣
白承飛%張叢光%嚮隆%陳秀榮
백승비%장총광%향륭%진수영
分数阶微分方程%数值解%精确解%稳定性
分數階微分方程%數值解%精確解%穩定性
분수계미분방정%수치해%정학해%은정성
fractional differential equations%numerical solution%exact solution%stability
文章用有限差分法对Fisher分数阶微分方程进行近似和求解,对所建立的差分格式进行了合理的收敛性和稳定性分析,最后通过数值算例得到了方程的数值解表达式,并验证了数值解与精确解高度拟合,进而证明了该差分格式的可行性。
文章用有限差分法對Fisher分數階微分方程進行近似和求解,對所建立的差分格式進行瞭閤理的收斂性和穩定性分析,最後通過數值算例得到瞭方程的數值解錶達式,併驗證瞭數值解與精確解高度擬閤,進而證明瞭該差分格式的可行性。
문장용유한차분법대Fisher분수계미분방정진행근사화구해,대소건립적차분격식진행료합리적수렴성화은정성분석,최후통과수치산례득도료방정적수치해표체식,병험증료수치해여정학해고도의합,진이증명료해차분격식적가행성。
This paper approximated the Fisher fractional differential equations and solved it with finite difference method. Then the paper reasonably analyzed the convergence and stability of the differential format which built by the above numerical solution. Finally, by calculating a numerical example and analyzing its error, this paper verified a great similarity between the equation's exact solution and numerical solution. And then it proved the feasibility of the differential scheme.