雷达学报
雷達學報
뢰체학보
JOURNAL OF RADARS
2014年
6期
666-674
,共9页
无源雷达%目标检测%联合优化%实时处理
無源雷達%目標檢測%聯閤優化%實時處理
무원뢰체%목표검측%연합우화%실시처리
Passive Radar%Target detection%Joint-optimize-and-processing%Real-time processing
无源雷达是一种本身不发射电磁波,而是利用外部辐射源信号进行探测的雷达系统,具有隐蔽性好、抗电磁干扰、抗隐身技术等优点。为了实现可靠目标探测,通常先对回波信号进行杂波对消,然后计算剩余回波和参考信号的互模糊函数。在基于大带宽信号源、相干累积时间较长、多波束同时处理的无源雷达系统中,常规方法需要较大的计算量和存储空间,不利于实时实现。该文研究了基于最小均方误差(Minimum Mean Square Error, MMSE)准则的杂波对消算法与基于互模糊函数的相干累积检测算法之间内在数学关系,提出一种降低计算量和存储量的联合优化方法,给出了在 NVIDIA CUDA(Computing Unified Device Architecture)平台上的实现,用实测结果论证了该文方法的高效性、实时性,并已应用于工程中。
無源雷達是一種本身不髮射電磁波,而是利用外部輻射源信號進行探測的雷達繫統,具有隱蔽性好、抗電磁榦擾、抗隱身技術等優點。為瞭實現可靠目標探測,通常先對迴波信號進行雜波對消,然後計算剩餘迴波和參攷信號的互模糊函數。在基于大帶寬信號源、相榦纍積時間較長、多波束同時處理的無源雷達繫統中,常規方法需要較大的計算量和存儲空間,不利于實時實現。該文研究瞭基于最小均方誤差(Minimum Mean Square Error, MMSE)準則的雜波對消算法與基于互模糊函數的相榦纍積檢測算法之間內在數學關繫,提齣一種降低計算量和存儲量的聯閤優化方法,給齣瞭在 NVIDIA CUDA(Computing Unified Device Architecture)平檯上的實現,用實測結果論證瞭該文方法的高效性、實時性,併已應用于工程中。
무원뢰체시일충본신불발사전자파,이시이용외부복사원신호진행탐측적뢰체계통,구유은폐성호、항전자간우、항은신기술등우점。위료실현가고목표탐측,통상선대회파신호진행잡파대소,연후계산잉여회파화삼고신호적호모호함수。재기우대대관신호원、상간루적시간교장、다파속동시처리적무원뢰체계통중,상규방법수요교대적계산량화존저공간,불리우실시실현。해문연구료기우최소균방오차(Minimum Mean Square Error, MMSE)준칙적잡파대소산법여기우호모호함수적상간루적검측산법지간내재수학관계,제출일충강저계산량화존저량적연합우화방법,급출료재 NVIDIA CUDA(Computing Unified Device Architecture)평태상적실현,용실측결과론증료해문방법적고효성、실시성,병이응용우공정중。
Passive radar exploits an external illuminator signal to detect targets. It has the advantages of silence, anti-interference, and counter-stealth ability. In most cases, direct and multipath clutters should be suppressed first. Then coherent detection can be made by performing a cross-ambiguity function of the remaining target echoes and the reference signal. However, under a wide-band signal, a long-integration time, or multi-beam circumstances, a large number of computations and amount of memory is required for normal processing. This paper expresses the mathematical relationships of clutter suppression algorithms based on the Minimum Mean Square Error (MMSE) principle and coherent detection algorithms based on the cross-ambiguity function. Herein, a joint-optimize and processing method is presented. This method reduces the number of computations and amount of memory required, is easy to implement on GPU devices such as CUDA, and will be useful for engineering applications. Its high-efficiency and real-time properties are validated in the experimental results.