失效分析与预防
失效分析與預防
실효분석여예방
FAILURE ANALYSIS AND PREVENTION
2014年
6期
330-334,356
,共6页
故障识别%最佳小波包分解%特征提取%隐马尔可夫模型
故障識彆%最佳小波包分解%特徵提取%隱馬爾可伕模型
고장식별%최가소파포분해%특정제취%은마이가부모형
fault identification%optimum wavelet packet decomposition%feature extraction%Hidden Markov Model
齿轮故障模式识别的关键问题在于对故障振动信号的特征提取。为了快速准确识别齿轮故障模式,提出了一种基于最佳小波包分解( OWPD)和隐马尔可夫模型( HMM)的识别方法。该方法对采集的振动信号进行小波包分解,再利用OWPD自动选择提取最佳小波包能量构造特征向量,输入HMM中进行训练与测试,实现了齿轮故障模式识别。实验结果表明该方法在齿轮故障模式识别方面的有效性和准确性。
齒輪故障模式識彆的關鍵問題在于對故障振動信號的特徵提取。為瞭快速準確識彆齒輪故障模式,提齣瞭一種基于最佳小波包分解( OWPD)和隱馬爾可伕模型( HMM)的識彆方法。該方法對採集的振動信號進行小波包分解,再利用OWPD自動選擇提取最佳小波包能量構造特徵嚮量,輸入HMM中進行訓練與測試,實現瞭齒輪故障模式識彆。實驗結果錶明該方法在齒輪故障模式識彆方麵的有效性和準確性。
치륜고장모식식별적관건문제재우대고장진동신호적특정제취。위료쾌속준학식별치륜고장모식,제출료일충기우최가소파포분해( OWPD)화은마이가부모형( HMM)적식별방법。해방법대채집적진동신호진행소파포분해,재이용OWPD자동선택제취최가소파포능량구조특정향량,수입HMM중진행훈련여측시,실현료치륜고장모식식별。실험결과표명해방법재치륜고장모식식별방면적유효성화준학성。
The key point of gear fault pattern recognition is the fault feature extraction of vibration signal. Aiming at feature extraction of gear fault pattern recognition, a method based on the Optimum Wavelet Packet Decomposition ( OWPD) and Hidden Markov Model ( HMM) is proposed in this paper. Processing of the vibration signals in the time domain is considered, using the wavelet packet. The characteristic energy automatically selected by OWPD is then employed as the input of HMM model for training and test. Finally the effect and accurate of the new method is validated by experiments.