矿冶工程
礦冶工程
광야공정
2014年
6期
132-136,148
,共6页
向紫琪%雷前%肖柱%庞咏
嚮紫琪%雷前%肖柱%龐詠
향자기%뢰전%초주%방영
Cu-Al2 O3 弥散铜合金%微观组织%力学性能%强化机制
Cu-Al2 O3 瀰散銅閤金%微觀組織%力學性能%彊化機製
Cu-Al2 O3 미산동합금%미관조직%역학성능%강화궤제
Cu-Al2O3 dispersion strengthened copper alloy(ADSC)%microstructures%mechanical property%strengthening mechanism
研究了Cu?2.7%Al2 O3弥散强化铜( ADSC)合金的微观组织和力学性能。研究表明,纳米级的Al2 O3弥散分布在铜基体中,多数为近球形,在晶界处有部分粗大的Al2 O3粒子存在。 Al2 O3粒子与位错的交互作用以及霍尔?佩奇机制的贡献占其室温屈服强度的90%,高温下合金的强度主要与Al2 O3粒子对位错的强烈钉扎以及对晶界和亚晶界滑动的阻碍作用有关。该合金的室温抗拉强度超过了560 MPa,700℃下的强度几乎与纯铜在室温下的强度相当。不同温度下的拉伸断口分析表明,弥散强化铜( ADSC)合金的塑性随温度升高逐渐降低。该合金的可加工性能优良,旋锻加工后,垂直于加工方向的晶粒进一步细化,平行于加工方向的纤维组织进一步拉长,横向和纵向硬度值均在160±5 Hv范围内。
研究瞭Cu?2.7%Al2 O3瀰散彊化銅( ADSC)閤金的微觀組織和力學性能。研究錶明,納米級的Al2 O3瀰散分佈在銅基體中,多數為近毬形,在晶界處有部分粗大的Al2 O3粒子存在。 Al2 O3粒子與位錯的交互作用以及霍爾?珮奇機製的貢獻佔其室溫屈服彊度的90%,高溫下閤金的彊度主要與Al2 O3粒子對位錯的彊烈釘扎以及對晶界和亞晶界滑動的阻礙作用有關。該閤金的室溫抗拉彊度超過瞭560 MPa,700℃下的彊度幾乎與純銅在室溫下的彊度相噹。不同溫度下的拉伸斷口分析錶明,瀰散彊化銅( ADSC)閤金的塑性隨溫度升高逐漸降低。該閤金的可加工性能優良,鏇鍛加工後,垂直于加工方嚮的晶粒進一步細化,平行于加工方嚮的纖維組織進一步拉長,橫嚮和縱嚮硬度值均在160±5 Hv範圍內。
연구료Cu?2.7%Al2 O3미산강화동( ADSC)합금적미관조직화역학성능。연구표명,납미급적Al2 O3미산분포재동기체중,다수위근구형,재정계처유부분조대적Al2 O3입자존재。 Al2 O3입자여위착적교호작용이급곽이?패기궤제적공헌점기실온굴복강도적90%,고온하합금적강도주요여Al2 O3입자대위착적강렬정찰이급대정계화아정계활동적조애작용유관。해합금적실온항랍강도초과료560 MPa,700℃하적강도궤호여순동재실온하적강도상당。불동온도하적랍신단구분석표명,미산강화동( ADSC)합금적소성수온도승고축점강저。해합금적가가공성능우량,선단가공후,수직우가공방향적정립진일보세화,평행우가공방향적섬유조직진일보랍장,횡향화종향경도치균재160±5 Hv범위내。
The microstructure and mechanical properties of Cu?2. 7%Al2 O3 dispersion strengthened copper ( ADSC ) alloy were investigated. The results indicated that nano?Al2 O3 particles, most of which are nearly spherical, dispersively distributed in the matrix copper, with some coarse ones distributed at the grain boundaries. The strength contributed by the interaction of dislocations with Al2O3 particles and Hall?Petch mechanism accounted for 90% of the yield strength of the alloy at room temperature. The high?temperature strength of the alloy was attributed to the strong pinning effect of the alumina particles on dislocations and the impediment to the sliding of grain and sub?grain boundaries. The tensile strength of the alloy was over 560 MPa at room temperature, and the strength was almost equivalent to that of pure copper at 700 ℃. Analysis of tensile fracture at different temperatures indicated that the plasticity of ADSC alloy decreased with the increasing of testing temperature. The ADSC alloy obtained excellent workability. After rotary swaging operation, the grains perpendicular to the machining direction were further refined, while the fibrous tissue parallel to the machining direction was further elongated, resulting in the horizontal and vertical hardness values within 160±5 Hv.