华北科技学院学报
華北科技學院學報
화북과기학원학보
JOURNAL OF NORTH CHINA INSTITUTE OF SCIENCE AND TECHNOLOGY
2014年
11期
52-56
,共5页
冯建超%连会青%韩永%陈建东
馮建超%連會青%韓永%陳建東
풍건초%련회청%한영%진건동
充水水源%灰岩水%BP 神经网络%灰色关联度%判别分析
充水水源%灰巖水%BP 神經網絡%灰色關聯度%判彆分析
충수수원%회암수%BP 신경망락%회색관련도%판별분석
source of water -filled%BP neural network%grey relational grade analysis%discriminant analysis
本文以赵家寨矿井为研究对象,采集了奥灰岩水样7个,L1-4灰岩水样6个,L7-8灰岩水样25个,砂岩水样2个,第三系水样1个,第四系地下水样1个,老空水样1个。灰岩水样分析结果表明,不同含水层水化学类型有一定差异,如以 L7-8灰岩水 HCO3-SO4型水为主。以六大离子作为判别因子,经灰色关联度分析、判别分析以及 BP 神经网络判别模型3种判别方法,对突水水源判别对比,综合选择出适当的水源判别方法。研究表明,该矿井以六大离子作为判别因子时选择 BP神经网络分析法进行预测的结果更加可靠。
本文以趙傢寨礦井為研究對象,採集瞭奧灰巖水樣7箇,L1-4灰巖水樣6箇,L7-8灰巖水樣25箇,砂巖水樣2箇,第三繫水樣1箇,第四繫地下水樣1箇,老空水樣1箇。灰巖水樣分析結果錶明,不同含水層水化學類型有一定差異,如以 L7-8灰巖水 HCO3-SO4型水為主。以六大離子作為判彆因子,經灰色關聯度分析、判彆分析以及 BP 神經網絡判彆模型3種判彆方法,對突水水源判彆對比,綜閤選擇齣適噹的水源判彆方法。研究錶明,該礦井以六大離子作為判彆因子時選擇 BP神經網絡分析法進行預測的結果更加可靠。
본문이조가채광정위연구대상,채집료오회암수양7개,L1-4회암수양6개,L7-8회암수양25개,사암수양2개,제삼계수양1개,제사계지하수양1개,로공수양1개。회암수양분석결과표명,불동함수층수화학류형유일정차이,여이 L7-8회암수 HCO3-SO4형수위주。이륙대리자작위판별인자,경회색관련도분석、판별분석이급 BP 신경망락판별모형3충판별방법,대돌수수원판별대비,종합선택출괄당적수원판별방법。연구표명,해광정이륙대리자작위판별인자시선택 BP신경망락분석법진행예측적결과경가가고。
In this paper,7 water samples of Ordovician limestone aquifer,6 water samples of L1 -4 limestone aquifer,25 water samples of L7 -8 limestone aquifer and 7 water samples of other aquifers were collected for the study from ZhaojiaZhai Coalmine.The results show that the water types of different aquifers were different in a certain degree,for example,the L7 -8 limestone water type is HCO3 -SO4.Choosing 6 ions as discriminant factors,grey relational grade analysis,discriminant analysis and BP neural network were used to distinguish the water sources.Then,the method of BP neural network was selected out to be the best suitable mathemati-cal discrimination method.