工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2015年
1期
145-158
,共14页
祖丽胡玛尔卡迪尔%李宁%黄鹏展%冯新龙
祖麗鬍瑪爾卡迪爾%李寧%黃鵬展%馮新龍
조려호마이잡적이%리저%황붕전%풍신룡
Burger’s方程%两水平格式%线性化逼近%Crank-Nicolson格式%有限差分方法
Burger’s方程%兩水平格式%線性化逼近%Crank-Nicolson格式%有限差分方法
Burger’s방정%량수평격식%선성화핍근%Crank-Nicolson격식%유한차분방법
Burger’s equation%two-level scheme%linearization approximation%linearized Crank-Nicolson scheme%finite difference method
本文中提出了求解Burger’s方程的两水平方法。新方法只需在粗网格上求解一个网格步长为H的非线性问题,在细网格上求解一个网格步长为h的线性问题。新格式是隐式无条件稳定的,并且能够得到与单水平解相同的收敛阶。由于单水平方法在细网格上求解一个大型非线性问题,所以我们的方法可以节省大量的计算时间。
本文中提齣瞭求解Burger’s方程的兩水平方法。新方法隻需在粗網格上求解一箇網格步長為H的非線性問題,在細網格上求解一箇網格步長為h的線性問題。新格式是隱式無條件穩定的,併且能夠得到與單水平解相同的收斂階。由于單水平方法在細網格上求解一箇大型非線性問題,所以我們的方法可以節省大量的計算時間。
본문중제출료구해Burger’s방정적량수평방법。신방법지수재조망격상구해일개망격보장위H적비선성문제,재세망격상구해일개망격보장위h적선성문제。신격식시은식무조건은정적,병차능구득도여단수평해상동적수렴계。유우단수평방법재세망격상구해일개대형비선성문제,소이아문적방법가이절성대량적계산시간。
In this paper, a two-level finite difference scheme is presented for the numerical approximation of Burger’s equation. The full nonlinear problem is solved on a coarse grid of size H , and a linear problem is solved on a fine mesh with mesh size h. The new difference scheme, which is the implicit one with unconditional stability and easy computation. The method we study provides an approximate solution with nearly the same error as the usual one-level solution, which involves solving one large nonlinear problem on a fine mesh with mesh size h. Hence, our method is capable of significantly saving computational time.