催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2015年
2期
168-174
,共7页
张晓明%卢胜梅%钟明梅%赵耀鹏%杨启华
張曉明%盧勝梅%鐘明梅%趙耀鵬%楊啟華
장효명%로성매%종명매%조요붕%양계화
铑-三苯基膦配合物功能化聚合物氧化硅复合材料%多相催化%氢甲酰化反应
銠-三苯基膦配閤物功能化聚閤物氧化硅複閤材料%多相催化%氫甲酰化反應
로-삼분기련배합물공능화취합물양화규복합재료%다상최화%경갑선화반응
Rh-PPh3-polymermesosilica composite%Heterogeneous catalysis%Hydroformylation reaction
通过在介孔氧化硅材料中原位聚合的方法制备了三苯基膦功能化的有机聚合物@介孔氧化硅复合材料PPh3-poly-mer@FDU-12.采用X射线衍射、氮气吸附脱附、透射电镜和热重等手段对其结构和组成进行了表征.该复合材料与金属前驱体Rh(acac)(CO)2配位后得到的固体催化剂,在长链烯烃1-辛烯的氢甲酰化反应中,醛选择性可达92%–96%,并表现出高于聚合物的活性(>99%转化率).这主要归因于介孔氧化硅材料的高比表面积和有序的孔结构更有利于反应物和催化活性中心的接触.研究发现,调变复合材料中聚合物的含量或使用不同孔道结构的氧化硅载体(SBA-15, MCM-41和FDU-12)都会影响固体催化剂的反应活性和选择性.该方法得到的多相催化剂具有较好的循环使用性能,在循环使用15次后仍能保持较好的反应活性,但醛选择性有所降低.
通過在介孔氧化硅材料中原位聚閤的方法製備瞭三苯基膦功能化的有機聚閤物@介孔氧化硅複閤材料PPh3-poly-mer@FDU-12.採用X射線衍射、氮氣吸附脫附、透射電鏡和熱重等手段對其結構和組成進行瞭錶徵.該複閤材料與金屬前驅體Rh(acac)(CO)2配位後得到的固體催化劑,在長鏈烯烴1-辛烯的氫甲酰化反應中,醛選擇性可達92%–96%,併錶現齣高于聚閤物的活性(>99%轉化率).這主要歸因于介孔氧化硅材料的高比錶麵積和有序的孔結構更有利于反應物和催化活性中心的接觸.研究髮現,調變複閤材料中聚閤物的含量或使用不同孔道結構的氧化硅載體(SBA-15, MCM-41和FDU-12)都會影響固體催化劑的反應活性和選擇性.該方法得到的多相催化劑具有較好的循環使用性能,在循環使用15次後仍能保持較好的反應活性,但醛選擇性有所降低.
통과재개공양화규재료중원위취합적방법제비료삼분기련공능화적유궤취합물@개공양화규복합재료PPh3-poly-mer@FDU-12.채용X사선연사、담기흡부탈부、투사전경화열중등수단대기결구화조성진행료표정.해복합재료여금속전구체Rh(acac)(CO)2배위후득도적고체최화제,재장련희경1-신희적경갑선화반응중,철선택성가체92%–96%,병표현출고우취합물적활성(>99%전화솔).저주요귀인우개공양화규재료적고비표면적화유서적공결구경유리우반응물화최화활성중심적접촉.연구발현,조변복합재료중취합물적함량혹사용불동공도결구적양화규재체(SBA-15, MCM-41화FDU-12)도회영향고체최화제적반응활성화선택성.해방법득도적다상최화제구유교호적순배사용성능,재순배사용15차후잉능보지교호적반응활성,단철선택성유소강저.
Rh‐PPh3‐polymer@mesosilica composites were prepared by the polymerization of mixtures of divinylbenzene (DVB) and 4‐vinyl‐triphenylphosphine monomer in the nanopores of mesoporous silicas followed by coordination with Rh(acac)(CO)2 (acac=acetylacetonate). These catalysts were characterized by XRD, N2 sorption, TEM, FT‐IR, and TG, and could efficiently catalyze the hydro‐formylation of 1‐octene with higher activity than a pure polymer catalyst because of their high sur‐face area and large pore volume, which were beneficial for the exposure of active sites and mass transport. Through the control of pore size and pore connectivity by using different mesoporous silica (MCM‐41, SBA‐15, and FDU‐12), the activity and selectivity can be controlled. Rh‐PPh3‐polymer@FDU‐12 with a cage‐like mesostrucuture showed lower activity but slightly higher selectivity than the catalyst with a 2‐D hexagonal mesostructure (Rh‐PPh3‐polymer@SBA‐15 or Rh‐PPh3‐polymer@MCM‐41). By varying the polymer content in the nanopores of the mesosilica, the activity and selectivity (92%–96%) can also be tuned. The solid composite catalyst can be recy‐cled without loss of activity, but a decrease in selectivity was observed.