计算物理
計算物理
계산물리
CHINESE JOURNAL OF COMPUTATIONAL PHYSICS
2015年
1期
20-26
,共7页
多孔介质%GPU%格子Boltzmann方法%并行计算
多孔介質%GPU%格子Boltzmann方法%併行計算
다공개질%GPU%격자Boltzmann방법%병행계산
porous media%GPU%lattice Boltzmann method%parallel computing
利用NVIDIA CUDA平台,在GPU上结合稀疏存贮算法实现基于格子Boltzmann方法的孔隙尺度多孔介质流动模拟加速,测试该算法相对基本算法的性能。比较该算法在不同GPU上使用LBGK和MRT两种碰撞模型及单、双精度计算时的性能差异。测试结果表明在GPU环境下采用稀疏存贮算法相对基本算法能大幅提高计算速度并节省显存,相对于串行CPU程序加速比达到两个量级。使用较新构架的GPU时,MRT和LBGK碰撞模型在单、双浮点数精度下计算速度相同。而在较上一代的GPU上,计算精度对MRT碰撞模型计算速度影响较大。
利用NVIDIA CUDA平檯,在GPU上結閤稀疏存貯算法實現基于格子Boltzmann方法的孔隙呎度多孔介質流動模擬加速,測試該算法相對基本算法的性能。比較該算法在不同GPU上使用LBGK和MRT兩種踫撞模型及單、雙精度計算時的性能差異。測試結果錶明在GPU環境下採用稀疏存貯算法相對基本算法能大幅提高計算速度併節省顯存,相對于串行CPU程序加速比達到兩箇量級。使用較新構架的GPU時,MRT和LBGK踫撞模型在單、雙浮點數精度下計算速度相同。而在較上一代的GPU上,計算精度對MRT踫撞模型計算速度影響較大。
이용NVIDIA CUDA평태,재GPU상결합희소존저산법실현기우격자Boltzmann방법적공극척도다공개질류동모의가속,측시해산법상대기본산법적성능。비교해산법재불동GPU상사용LBGK화MRT량충팽당모형급단、쌍정도계산시적성능차이。측시결과표명재GPU배경하채용희소존저산법상대기본산법능대폭제고계산속도병절성현존,상대우천행CPU정서가속비체도량개량급。사용교신구가적GPU시,MRT화LBGK팽당모형재단、쌍부점수정도하계산속도상동。이재교상일대적GPU상,계산정도대MRT팽당모형계산속도영향교대。
A sparse lattice representation lattice Boltzmann method algorithm is implemented on Graphics Processing Units ( GPU) to accelerate pore scale flow simuation. Prefomance testing shows that sparse lattice representation approach grately reduces memory requirement and maintains performance under low porosity compared with basic algorithm. Overall speedup reaches two orders of magnitude compared with serial code. Various factors including collision model, float number precision, and GPU that affect computing speed of the algorithm are invesgated independently. It indicates that MRT model runs as fast as LBGK model on new generation of GPU cards. While on old GPU cards, MRT model’ s computing speed matchs LBGK only when using single precision float.