南京大学学报(自然科学版)
南京大學學報(自然科學版)
남경대학학보(자연과학판)
JOURNAL OF NANJING UNIVERSITY(NATURAL SCIENCES)
2015年
1期
174-180
,共7页
王艳霞%赵建民%郑忠龙%孙广华
王豔霞%趙建民%鄭忠龍%孫廣華
왕염하%조건민%정충룡%손엄화
生物特征识别%掌纹识别%掌纹场特征%数据场%小波包熵
生物特徵識彆%掌紋識彆%掌紋場特徵%數據場%小波包熵
생물특정식별%장문식별%장문장특정%수거장%소파포적
biometrics%palmprint recognition%palmprint field feature%data fields%wavelet packet entropy
掌纹的方向是一种十分有效的特征,但如何将纹线特征和方向特征有效地融合仍然是未解决的问题。提出一种基于场特征的掌纹识别方法。该方法利用数据场和小波包熵构建和表征掌纹场特征以实现掌纹识别。首先将数据场理论引入到掌纹识别领域,构建掌纹数据场,并将其分解为绝对数据子场、相对数据子场和方向子场;然后,基于小波包将不同数据子场分解求取各节点相对小波包能量,并计算小波包熵表征各掌纹子场不同频带能量分布特征;最后,将各子场特征拼接整合为掌纹场特征,并使用 BP 神经网络对其进行分类。实验结果表明,该方法可以获得较高的识别精度。
掌紋的方嚮是一種十分有效的特徵,但如何將紋線特徵和方嚮特徵有效地融閤仍然是未解決的問題。提齣一種基于場特徵的掌紋識彆方法。該方法利用數據場和小波包熵構建和錶徵掌紋場特徵以實現掌紋識彆。首先將數據場理論引入到掌紋識彆領域,構建掌紋數據場,併將其分解為絕對數據子場、相對數據子場和方嚮子場;然後,基于小波包將不同數據子場分解求取各節點相對小波包能量,併計算小波包熵錶徵各掌紋子場不同頻帶能量分佈特徵;最後,將各子場特徵拼接整閤為掌紋場特徵,併使用 BP 神經網絡對其進行分類。實驗結果錶明,該方法可以穫得較高的識彆精度。
장문적방향시일충십분유효적특정,단여하장문선특정화방향특정유효지융합잉연시미해결적문제。제출일충기우장특정적장문식별방법。해방법이용수거장화소파포적구건화표정장문장특정이실현장문식별。수선장수거장이론인입도장문식별영역,구건장문수거장,병장기분해위절대수거자장、상대수거자장화방향자장;연후,기우소파포장불동수거자장분해구취각절점상대소파포능량,병계산소파포적표정각장문자장불동빈대능량분포특정;최후,장각자장특정병접정합위장문장특정,병사용 BP 신경망락대기진행분류。실험결과표명,해방법가이획득교고적식별정도。
Palmprint images contain rich unique features for reliable human identification,which makes it a very com-petitive topic in biometric research.From a low resolution palmprint image,the information of principal lines and wrinkles can be obtained to realize palmprint recognition.The direction feature of palmprint lines is an effective feature.But how to effectively fuse the direction feature and other palmprint line features is an open problem in palmprint recognition.In order to solve the problem,a palmprint recognition algorithm based on palmprint field features is proposed in the paper.In the method,data fields and wavelet packed entropy are used to construct palmprint data field and extract a new palmprint feature,the palmprint field feature.The field feature is the combination of the structural feature and direction feature.Firstly,the data field theory is introduced into palmprint recognition field and each point in the palm lines is seen as a data point with unit mass to map an enhanced palmprint image from gray space to the corresponding potential space.In the space,all points in the palm lines will be affected by other points to form a palmprint image data field.Because the distribution of palmprint data field is affected by the thickness,direction and distribution density of palm-lines,a wealth of the structural and direction information of palm-lines are provided by palmprint data field.For the sake of improving the distinguish ability,the palmprint data field data is decomposed into a relative palmprint data field,an absolute palmprint data field and a direction data field.The absolute data field can make a rough distinction between background and targets,the edge information is highlighted in the relative data field and the direction information of points in each palm-line is obtained in the direction data field.Next,the different sub-data fields are decomposed by wavelet packet transform and the entropies for all nodes for wavelet packet are calculated.These wavelet packed entropies can represent the features of energy distribution of different sub-data fields in different nodes.Finally,all of features of each sub-field are joined into one palmprint field feature,which is fed to backpropagation neural networks for classification.The experimental results illustrate the effectiveness of the method.