岩土力学
巖土力學
암토역학
ROCK AND SOIL MECHANICS
2015年
2期
393-402
,共10页
应变软化%本构模型%隐式返回映射算法%Newton-Raphson法%arc-length法%程序编制
應變軟化%本構模型%隱式返迴映射算法%Newton-Raphson法%arc-length法%程序編製
응변연화%본구모형%은식반회영사산법%Newton-Raphson법%arc-length법%정서편제
strain softening%constitutive model%fully implicit return mapping algorithm%Newton-Raphson scheme%arc-length method%programming
针对岩土工程材料应变软化问题及有限元对其数值计算时切线刚度矩阵负定造成求解困难的问题进行研究。建立了基于Drucker-Prager(D-P)强度准则的岩石弹塑性应变软化本构模型,本构积分算法采用一种完全隐式返回映射算法,它具有无条件稳定和精确的特点,详细论述了如何进行本构模型的程序化求解;考虑弧长法在判断切线刚度矩阵正定性导致效率低的缺点,在弹塑性增量有限元方程的迭代计算中尝试采用Newton-Raphson法和arc-length法(NR-AL法)联合迭代求解的思路,即在结构未达到极限荷载前采用NR迭代法,而当结构接近极限荷载时转换为AL法控制迭代,从而使结构越过峰值点进入软化区直至破坏,NR-AL法汲取了2者迭代求解中具有的优势;利用C++语言对所建应变软化模型的本构求解和弹塑性增量有限元方程迭代求解过程给予程序实现,应用所编程序进行数值计算,分析了D-P理想弹塑性模型、应变软化模型、应变硬化模型计算的应力-应变曲线的区别,同时将应变软化模型计算结果与试验数据进行了对比。研究结果表明:所建应变软化本构模型可以较好地模拟岩石材料的峰后软化特性,能够揭示峰后应变软化特性和破坏机制,同时NR-AL法能够求解由于应变软化造成的负刚度问题,也克服了单独使用弧长法时判断切线刚度矩阵正定性效率低的缺点。
針對巖土工程材料應變軟化問題及有限元對其數值計算時切線剛度矩陣負定造成求解睏難的問題進行研究。建立瞭基于Drucker-Prager(D-P)彊度準則的巖石彈塑性應變軟化本構模型,本構積分算法採用一種完全隱式返迴映射算法,它具有無條件穩定和精確的特點,詳細論述瞭如何進行本構模型的程序化求解;攷慮弧長法在判斷切線剛度矩陣正定性導緻效率低的缺點,在彈塑性增量有限元方程的迭代計算中嘗試採用Newton-Raphson法和arc-length法(NR-AL法)聯閤迭代求解的思路,即在結構未達到極限荷載前採用NR迭代法,而噹結構接近極限荷載時轉換為AL法控製迭代,從而使結構越過峰值點進入軟化區直至破壞,NR-AL法伋取瞭2者迭代求解中具有的優勢;利用C++語言對所建應變軟化模型的本構求解和彈塑性增量有限元方程迭代求解過程給予程序實現,應用所編程序進行數值計算,分析瞭D-P理想彈塑性模型、應變軟化模型、應變硬化模型計算的應力-應變麯線的區彆,同時將應變軟化模型計算結果與試驗數據進行瞭對比。研究結果錶明:所建應變軟化本構模型可以較好地模擬巖石材料的峰後軟化特性,能夠揭示峰後應變軟化特性和破壞機製,同時NR-AL法能夠求解由于應變軟化造成的負剛度問題,也剋服瞭單獨使用弧長法時判斷切線剛度矩陣正定性效率低的缺點。
침대암토공정재료응변연화문제급유한원대기수치계산시절선강도구진부정조성구해곤난적문제진행연구。건립료기우Drucker-Prager(D-P)강도준칙적암석탄소성응변연화본구모형,본구적분산법채용일충완전은식반회영사산법,타구유무조건은정화정학적특점,상세논술료여하진행본구모형적정서화구해;고필호장법재판단절선강도구진정정성도치효솔저적결점,재탄소성증량유한원방정적질대계산중상시채용Newton-Raphson법화arc-length법(NR-AL법)연합질대구해적사로,즉재결구미체도겁한하재전채용NR질대법,이당결구접근겁한하재시전환위AL법공제질대,종이사결구월과봉치점진입연화구직지파배,NR-AL법급취료2자질대구해중구유적우세;이용C++어언대소건응변연화모형적본구구해화탄소성증량유한원방정질대구해과정급여정서실현,응용소편정서진행수치계산,분석료D-P이상탄소성모형、응변연화모형、응변경화모형계산적응력-응변곡선적구별,동시장응변연화모형계산결과여시험수거진행료대비。연구결과표명:소건응변연화본구모형가이교호지모의암석재료적봉후연화특성,능구게시봉후응변연화특성화파배궤제,동시NR-AL법능구구해유우응변연화조성적부강도문제,야극복료단독사용호장법시판단절선강도구진정정성효솔저적결점。
Strain softening problem in geotechnical engineering and the difficult solution problem of the finite element numerical calculation due to the negative tangent stiffness of strain softening model are studied. An elastoplastic strain softening constitutive model of rock is established based on the Drucker-Prager strength criteria. A fully implicit return mapping algorithm which has characteristics of the unconditional stability and precision is used to solve the constitutive equation, and how the programmed constitutive model to be solved is discussed in detail. Then, the shortcomings of low efficiency of the arc-length method in judging stiffness matrix is considered, Newton-Raphson scheme and arc-length method (NR-AL method) are combined to iteratively solve the calculation of elastoplastic incremental finite element equations. Namely Newton-Raphson scheme is used before the structure reaching the limit load, and when the structure is close to the limit load, turning to the arc-length method, so that the structure can go over the peak point into the softening phase until destruction. NR-AL method has the advantages in the iterative solution. A program of the built strain softening model and elastoplastic incremental finite element to solve the constitutive equation for the iterative process is compiled using C++ language. The program is applied to numerical calculation, and the stress-strain curves of the idealized elastoplastic model, strain softening and strain hardening model based on the Drucker-Prager strength criteria are comparatively analyzed. The results show that the strain softening constitutive model can simulate the characteristics the post-peak softening of rock material well, and it can reveal the features of the post-peak strain softening and failure mechanism. NR-AL method can solve the negative stiffness problem caused by strain softening and also overcome the shortcomings of low efficiency in judging stiffness matrix using the arc-length only.