桂林电子科技大学学报
桂林電子科技大學學報
계림전자과기대학학보
JOURNAL OF GUILIN UNIVERSITY OF ELECTRONIC TECHNOLOGY
2014年
6期
479-483
,共5页
刘双成%蔡晓东%张力%毕伟伟%梁建勇
劉雙成%蔡曉東%張力%畢偉偉%樑建勇
류쌍성%채효동%장력%필위위%량건용
脸型分类%主动形状模型%面型指数%K近邻算法
臉型分類%主動形狀模型%麵型指數%K近鄰算法
검형분류%주동형상모형%면형지수%K근린산법
face shape classification%active shape model%face shape index%K nearest neighbor algorithm
针对人脸描述性脸型特征分类问题,提出一种新的基于主动形状模型和K近邻算法的脸型分类方法。根据主动形状模型方法定位得到的测试样本人脸边缘轮廓点,经归一化后以其围成区域面积作为人脸脸型特征。采用 K 近邻算法和面型指数实现测试图像的脸型分类。实验结果表明,该方法对人脸姿态变化有一定的鲁棒性,分类结果准确度高且脸型的分类符合人主观描述性判断。
針對人臉描述性臉型特徵分類問題,提齣一種新的基于主動形狀模型和K近鄰算法的臉型分類方法。根據主動形狀模型方法定位得到的測試樣本人臉邊緣輪廓點,經歸一化後以其圍成區域麵積作為人臉臉型特徵。採用 K 近鄰算法和麵型指數實現測試圖像的臉型分類。實驗結果錶明,該方法對人臉姿態變化有一定的魯棒性,分類結果準確度高且臉型的分類符閤人主觀描述性判斷。
침대인검묘술성검형특정분류문제,제출일충신적기우주동형상모형화K근린산법적검형분류방법。근거주동형상모형방법정위득도적측시양본인검변연륜곽점,경귀일화후이기위성구역면적작위인검검형특정。채용 K 근린산법화면형지수실현측시도상적검형분류。실험결과표명,해방법대인검자태변화유일정적로봉성,분류결과준학도고차검형적분류부합인주관묘술성판단。
Aiming at the classification problem of descriptive facial features,a novel face shape classification method based on active shape model and K nearest neighbor algorithm is proposed.Active shape model is used to extract facial contour points of the test sample,and then the enclosed area of the normalized facial contour points is regard as the facial shape features. Face shape classification of the test face image is realized by using K nearest neighbor algorithm and facial index.The experi-mental results show that this method is robust for pose variation,the classification accuracy is high and classification results are consistent with subj ective j udgments.