长春工程学院学报(自然科学版)
長春工程學院學報(自然科學版)
장춘공정학원학보(자연과학판)
JOURNAL OF CHANGCHUN INSTITUTE OF TECHNOLOGY(NATURAL SCIENCE EDITION)
2014年
4期
116-119
,共4页
粒子群算法%集聚度%进化速度%惯性权重
粒子群算法%集聚度%進化速度%慣性權重
입자군산법%집취도%진화속도%관성권중
particle swarm optimization%agglomeration degree%evolution velocity%inertia weight
针对粒子群算法在寻优过程中容易陷入局部最优,以及难以平衡求精和求泛的能力,提出一种动态惯性权重粒子群优化算法。该算法同时考虑到粒子的进化速度和集聚程度对算法寻优的影响,当粒子集聚程度较高时,增大惯性权值,提高算法的全局搜索能力。为平衡算法全局和局部寻优能力,当进化速度较快时,提高局部搜索能力,以免错过较好的位置。将此算法用于优化4个经典测试函数,实验表明:此算法不仅可以平衡局部和全局的搜索能力,还能提高算法的搜索效率和精度。
針對粒子群算法在尋優過程中容易陷入跼部最優,以及難以平衡求精和求汎的能力,提齣一種動態慣性權重粒子群優化算法。該算法同時攷慮到粒子的進化速度和集聚程度對算法尋優的影響,噹粒子集聚程度較高時,增大慣性權值,提高算法的全跼搜索能力。為平衡算法全跼和跼部尋優能力,噹進化速度較快時,提高跼部搜索能力,以免錯過較好的位置。將此算法用于優化4箇經典測試函數,實驗錶明:此算法不僅可以平衡跼部和全跼的搜索能力,還能提高算法的搜索效率和精度。
침대입자군산법재심우과정중용역함입국부최우,이급난이평형구정화구범적능력,제출일충동태관성권중입자군우화산법。해산법동시고필도입자적진화속도화집취정도대산법심우적영향,당입자집취정도교고시,증대관성권치,제고산법적전국수색능력。위평형산법전국화국부심우능력,당진화속도교쾌시,제고국부수색능력,이면착과교호적위치。장차산법용우우화4개경전측시함수,실험표명:차산법불부가이평형국부화전국적수색능력,환능제고산법적수색효솔화정도。
Considering the problems of local optimum and difficulty in balancing the search capability of searching accuracy and extension caused by particle swarm optimization, this paper proposes a modified particle swarm optimization by using dynamic inertia weight. This algorithm considers the influence to opti‐mization both from the evolution velocity of particle swarm and the agglomeration degree. To improve the global searching capacity of this algorithm, and to increasethe inertia weight, when agglomeration of parti‐cles is high. In order to balance global and local optimization ability of this algorithm, local optimization a‐bility should be increased w hen algorithm has higher evolution velocity, so as not to miss a good location. The algorithm in this paper can be used in 4 classical testing functions, and the results show that the pro‐posed algorithm can not only balance the global and local search abilities, but also optimize the searching ef‐ficiency and accuracy.