表面技术
錶麵技術
표면기술
SURFACE TECHNOLOGY
2015年
1期
51-55,63
,共6页
钟奇能%粟泽龙%李新禄
鐘奇能%粟澤龍%李新祿
종기능%속택룡%리신록
氮掺杂石墨烯%多孔结构%超级电容器
氮摻雜石墨烯%多孔結構%超級電容器
담참잡석묵희%다공결구%초급전용기
N-doped graphene%porous structure%supercapacitor
目的:改善超级电容器用石墨烯薄膜的超电容性能。方法采用水热和高温热解法制备多孔氮掺杂的石墨烯柔性薄膜,采用SEM形貌、XRD图谱和等温曲线分析其结构,采用三电极体系测试循环伏安曲线和恒流充放电曲线,分析其超电容性能。结果氮掺杂石墨烯柔性薄膜保持了氧化石墨烯的褶皱透明,同时具有网络式的多孔洞结构。氮气吸脱附测试表明,氮掺杂多孔石墨烯的比表面积为280.78 m2/g。氮掺杂石墨烯薄膜在1.0 mol/L硫酸钠溶液中,当电流密度为0.1 A/g时,其比容量达到169 F/g。结论氮原子的掺杂以及氮掺杂石墨烯柔性薄膜的多孔结构可以有效提高石墨烯材料的超电容性能。
目的:改善超級電容器用石墨烯薄膜的超電容性能。方法採用水熱和高溫熱解法製備多孔氮摻雜的石墨烯柔性薄膜,採用SEM形貌、XRD圖譜和等溫麯線分析其結構,採用三電極體繫測試循環伏安麯線和恆流充放電麯線,分析其超電容性能。結果氮摻雜石墨烯柔性薄膜保持瞭氧化石墨烯的褶皺透明,同時具有網絡式的多孔洞結構。氮氣吸脫附測試錶明,氮摻雜多孔石墨烯的比錶麵積為280.78 m2/g。氮摻雜石墨烯薄膜在1.0 mol/L硫痠鈉溶液中,噹電流密度為0.1 A/g時,其比容量達到169 F/g。結論氮原子的摻雜以及氮摻雜石墨烯柔性薄膜的多孔結構可以有效提高石墨烯材料的超電容性能。
목적:개선초급전용기용석묵희박막적초전용성능。방법채용수열화고온열해법제비다공담참잡적석묵희유성박막,채용SEM형모、XRD도보화등온곡선분석기결구,채용삼전겁체계측시순배복안곡선화항류충방전곡선,분석기초전용성능。결과담참잡석묵희유성박막보지료양화석묵희적습추투명,동시구유망락식적다공동결구。담기흡탈부측시표명,담참잡다공석묵희적비표면적위280.78 m2/g。담참잡석묵희박막재1.0 mol/L류산납용액중,당전류밀도위0.1 A/g시,기비용량체도169 F/g。결론담원자적참잡이급담참잡석묵희유성박막적다공결구가이유효제고석묵희재료적초전용성능。
ABSTRACT:Objective To improve the electrochemical performance of graphene films for supercapacitors. Methods Flexible ni-trogen-doped graphene ( N-doped graphene) films with porous structure were synthesized by hydrothermal and pyrolysis methods. The structure of the N-doped graphene films were analyzed by scanning electron microscope ( SEM) , X-ray diffraction ( XRD) and isotherms. The electrochemical capacitance of N-doped graphene films was examined by three-electrode system test cyclic voltam-metry and galvanostatic charge-discharge methods. Results The experiments indicated that the flexible N-doped graphene films re-tained the folded and transparent characteristics of graphene oxide, and formed a three-dimensional porous structure as well. The surface area of N-doped grapheme was measured to be 280. 78 m2/g by the nitrogen adsorption-desorption test. The specific dis-charge capacitance for the material was 169 F/g in 1. 0 mol/L NaSO4 solution when the current density was 0. 1 A/g. Conclusion The doping of nitrogen atoms and the porous structure of the flexible N-doped graphene films could effectively improve the superca-pacitor performance of the graphene material.