大连理工大学学报
大連理工大學學報
대련리공대학학보
JOURNAL OF DALIAN UNIVERSITY OF TECHNOLOGY
2015年
1期
67-72
,共6页
牵引控制单元%故障诊断%支持向量机(SVM)%改进粒子群优化(IPSO)算法
牽引控製單元%故障診斷%支持嚮量機(SVM)%改進粒子群優化(IPSO)算法
견인공제단원%고장진단%지지향량궤(SVM)%개진입자군우화(IPSO)산법
traction control unit%fault diagnosis%support vector machine (SVM)%improved particle swarm optimization (IPSO)algorithm
地铁车辆牵引控制单元(TCU)是地铁系统的核心单元之一,准确诊断其故障状态对整个地铁车辆安全运行至关重要.基于数据的故障诊断方法是当前热点方法之一.针对牵引控制单元故障诊断中检测参数多、故障类别多的特点,提出了改进的粒子群优化支持向量机(IPSO-SVM)方法,克服了传统方法存在过拟合、收敛速度慢、易陷入局部最优的缺点.使用UCI机器学习数据库中的5个数据集进行仿真实验,结果表明:IPSO-SVM 分类精度高于ICPSO-SVM、PSO-SVM、GA-SVM.进一步将此方法应用于地铁车辆实际数据,同样得到了较好的分类结果,验证了所提方法的有效性.
地鐵車輛牽引控製單元(TCU)是地鐵繫統的覈心單元之一,準確診斷其故障狀態對整箇地鐵車輛安全運行至關重要.基于數據的故障診斷方法是噹前熱點方法之一.針對牽引控製單元故障診斷中檢測參數多、故障類彆多的特點,提齣瞭改進的粒子群優化支持嚮量機(IPSO-SVM)方法,剋服瞭傳統方法存在過擬閤、收斂速度慢、易陷入跼部最優的缺點.使用UCI機器學習數據庫中的5箇數據集進行倣真實驗,結果錶明:IPSO-SVM 分類精度高于ICPSO-SVM、PSO-SVM、GA-SVM.進一步將此方法應用于地鐵車輛實際數據,同樣得到瞭較好的分類結果,驗證瞭所提方法的有效性.
지철차량견인공제단원(TCU)시지철계통적핵심단원지일,준학진단기고장상태대정개지철차량안전운행지관중요.기우수거적고장진단방법시당전열점방법지일.침대견인공제단원고장진단중검측삼수다、고장유별다적특점,제출료개진적입자군우화지지향량궤(IPSO-SVM)방법,극복료전통방법존재과의합、수렴속도만、역함입국부최우적결점.사용UCI궤기학습수거고중적5개수거집진행방진실험,결과표명:IPSO-SVM 분류정도고우ICPSO-SVM、PSO-SVM、GA-SVM.진일보장차방법응용우지철차량실제수거,동양득도료교호적분류결과,험증료소제방법적유효성.
Metro vehicle traction control unit is one of the core units of the subway system.Accurate diagnosis of the fault status is very important to the safety running of whole metro vehicle.Data-driven fault diagnosis method is one of current hot methods.Based on the characteristics of multi-parameter and multi-category in traction control unit fault diagnosis,a method of support vector machine (SVM)optimized by improved particle swarm optimization (IPSO)is proposed to overcome the shortcomings of traditional methods,such as overfitting,slow convergence speed and easily being trapped into local optimal solution.Simulation experiments are carried out on five datasets from UCI machine learning repository.The simulation results show that the classification accuracy of IPSO-SVM is higher than that of ICPSO-SVM,PSO-SVM and GA-SVM.Then,this method is applied to metro vehicle actual data,also gets a better classification result,which verifies that IPSO-SVM is an effective method.