山东医药
山東醫藥
산동의약
SHANDONG MEDICAL JOURNAL
2015年
8期
18-20
,共3页
类风湿关节炎%支持向量机%诊断模型%抗环瓜氨酸多肽抗体%类风湿因子
類風濕關節炎%支持嚮量機%診斷模型%抗環瓜氨痠多肽抗體%類風濕因子
류풍습관절염%지지향량궤%진단모형%항배과안산다태항체%류풍습인자
rheumatoid arthritis%support vector machine%diagnostic model%anti-CCP%rheumatoid factor
目的:构建基于支持向量机( SVM)的类风湿关节炎( RA)早期诊断模型,并评价其预测效果。方法以240例RA患者和180例其他风湿免疫病患者作为研究对象,测定其血清抗环瓜氨酸多肽( CCP)抗体和类风湿因子( RF),采用SVM 构建早期诊断模型,并采用五次交叉验证法评价其效果。结果 SVM 仿真诊断正确率为85.48%,高于RF(70.71%)和抗CCP抗体(84.05%)。五次交叉验证结果显示,SVM仿真模型诊断RA的灵敏度(Sen)为88.33%、特异度(Spe)为81.67%,MCC 值为0.70265,说明模型性能较好。 RF 诊断 RA 的 Sen 为74.17%,Spe为66.11%,抗CCP抗体诊断RA的Sen为78.75%、Spe为91.11%。三者Sen、Spe比较,P均<0.01。结论成功构建基于SVM的RA早期诊断模型,其对RA的预测效果较好。
目的:構建基于支持嚮量機( SVM)的類風濕關節炎( RA)早期診斷模型,併評價其預測效果。方法以240例RA患者和180例其他風濕免疫病患者作為研究對象,測定其血清抗環瓜氨痠多肽( CCP)抗體和類風濕因子( RF),採用SVM 構建早期診斷模型,併採用五次交扠驗證法評價其效果。結果 SVM 倣真診斷正確率為85.48%,高于RF(70.71%)和抗CCP抗體(84.05%)。五次交扠驗證結果顯示,SVM倣真模型診斷RA的靈敏度(Sen)為88.33%、特異度(Spe)為81.67%,MCC 值為0.70265,說明模型性能較好。 RF 診斷 RA 的 Sen 為74.17%,Spe為66.11%,抗CCP抗體診斷RA的Sen為78.75%、Spe為91.11%。三者Sen、Spe比較,P均<0.01。結論成功構建基于SVM的RA早期診斷模型,其對RA的預測效果較好。
목적:구건기우지지향량궤( SVM)적류풍습관절염( RA)조기진단모형,병평개기예측효과。방법이240례RA환자화180례기타풍습면역병환자작위연구대상,측정기혈청항배과안산다태( CCP)항체화류풍습인자( RF),채용SVM 구건조기진단모형,병채용오차교차험증법평개기효과。결과 SVM 방진진단정학솔위85.48%,고우RF(70.71%)화항CCP항체(84.05%)。오차교차험증결과현시,SVM방진모형진단RA적령민도(Sen)위88.33%、특이도(Spe)위81.67%,MCC 치위0.70265,설명모형성능교호。 RF 진단 RA 적 Sen 위74.17%,Spe위66.11%,항CCP항체진단RA적Sen위78.75%、Spe위91.11%。삼자Sen、Spe비교,P균<0.01。결론성공구건기우SVM적RA조기진단모형,기대RA적예측효과교호。
Objective To establish an early diagnosis of rheumatoid arthritis based on support bector machine and e -valuate its predictive effect .Methods Included 240 rheumatoid arthritis patients and 180 other rheumatic autoimmune disease patients , anti-CCP and RF was measured .Establish an early diagnosis of rheumatoid arthritis based on support vec-tor machine , and evaluate its predictive effect by using 5-fold cross validation .Results The correct diagnostic rate of 5-fold cross validation was 85.48%, diagnostic sensitivity was 88.33% and diagnostic specificity was 81.67%, prediction diagnostic accuracy was better than RF and anti-CCP (all P<0.01).MMC was 0.702 65.Conclusion The study sug-gests that rheumatoid arthritis early diagnosis model based on support vector machine have a prediction diagnostic accuracy .