机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2014年
24期
24-30
,共7页
周友行%张俏%田茂%喻思亮
週友行%張俏%田茂%喻思亮
주우행%장초%전무%유사량
批量钻削%工步质量%监测信号%高斯分布%双谱%聚类
批量鑽削%工步質量%鑑測信號%高斯分佈%雙譜%聚類
비량찬삭%공보질량%감측신호%고사분포%쌍보%취류
batch drilling%step quality%monitoring signals%Gaussian distribution%bi-spectrum%clustering
基于钻削工步质量波动与监测信号特征变化之间的耦合现象,提出一种基于监测信号双谱特征的高精度批量钻削工步质量一致性控制检测方法。认为正常钻削过程的声发射和三向加速度振动监测信号可视为随机过程,满足或近似高斯分布,信号偏离高斯分布的程度与各钻孔加工质量波动间存在对应关系;以各钻孔声发射和加速度振动监测信号为研究对象,提取各钻孔监测信号的双谱幅值平均值为特征,对不同钻削情况下信号偏离高斯分布的程度进行定量分析;采用基于ReliefF算法的特征加权模糊聚类分析,进行基于监测信号双谱幅值均值特征矩阵的钻孔质量分类,并与人工检测的工步质量一致性结果对比分析。计算和分析结果表明,监测信号双谱特征与各钻削工步质量之间存在有机联系,对信号双谱特征进行融合聚类可分析批量钻削工步质量的一致性。
基于鑽削工步質量波動與鑑測信號特徵變化之間的耦閤現象,提齣一種基于鑑測信號雙譜特徵的高精度批量鑽削工步質量一緻性控製檢測方法。認為正常鑽削過程的聲髮射和三嚮加速度振動鑑測信號可視為隨機過程,滿足或近似高斯分佈,信號偏離高斯分佈的程度與各鑽孔加工質量波動間存在對應關繫;以各鑽孔聲髮射和加速度振動鑑測信號為研究對象,提取各鑽孔鑑測信號的雙譜幅值平均值為特徵,對不同鑽削情況下信號偏離高斯分佈的程度進行定量分析;採用基于ReliefF算法的特徵加權模糊聚類分析,進行基于鑑測信號雙譜幅值均值特徵矩陣的鑽孔質量分類,併與人工檢測的工步質量一緻性結果對比分析。計算和分析結果錶明,鑑測信號雙譜特徵與各鑽削工步質量之間存在有機聯繫,對信號雙譜特徵進行融閤聚類可分析批量鑽削工步質量的一緻性。
기우찬삭공보질량파동여감측신호특정변화지간적우합현상,제출일충기우감측신호쌍보특정적고정도비량찬삭공보질량일치성공제검측방법。인위정상찬삭과정적성발사화삼향가속도진동감측신호가시위수궤과정,만족혹근사고사분포,신호편리고사분포적정도여각찬공가공질량파동간존재대응관계;이각찬공성발사화가속도진동감측신호위연구대상,제취각찬공감측신호적쌍보폭치평균치위특정,대불동찬삭정황하신호편리고사분포적정도진행정량분석;채용기우ReliefF산법적특정가권모호취류분석,진행기우감측신호쌍보폭치균치특정구진적찬공질량분류,병여인공검측적공보질량일치성결과대비분석。계산화분석결과표명,감측신호쌍보특정여각찬삭공보질량지간존재유궤련계,대신호쌍보특정진행융합취류가분석비량찬삭공보질량적일치성。
Based on the coupling phenomena between the batch drilling process quality fluctuation and monitoring signals features changes, a kind of signals feature extraction method based on bi-spectrum feature is proposed to solve the quality consistency control and testing problem of the high-precision batch drilling step. Theoretically, the acoustic emission signal and acceleration vibration signal of a normal drilling process is viewed as a stochastic process to meet with Gaussian distribution, and there could be a corresponding relationship between the deviation degree from Gaussian distribution of signal and the drilling step quality fluctuation. The acoustic emission signals and acceleration vibration signals of batch drilling are taken as research objects, the quantitative analysis of the deviation degree from Gaussian distribution under different conditions could be expressed by the average bi-spectrum amplitude of each signal. The ReliefF algorithm is used to assign the weights for every feature, these step quality classification is performed using feature weighted fuzzy cluster algorithm and to be contrast with the manual detection result. The results show that there are organic connections between the bi-spectrum feature of monitoring signals and drilling step quality, and the consistency quality testing of batch drilling step is realized by fusion of clustering bi-spectrum features.